Suppr超能文献

用于遥感的计算鬼成像。

Computational ghost imaging for remote sensing.

作者信息

Erkmen Baris I

机构信息

Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, California 91109, USA.

出版信息

J Opt Soc Am A Opt Image Sci Vis. 2012 May 1;29(5):782-9. doi: 10.1364/JOSAA.29.000782.

Abstract

Computational ghost imaging is a structured-illumination active imager coupled with a single-pixel detector that has potential applications in remote sensing. Here we report on an architecture that acquires the two-dimensional spatial Fourier transform of the target object (which can be inverted to obtain a conventional image). We determine its image signature, resolution, and signal-to-noise ratio in the presence of practical constraints such as atmospheric turbulence, background radiation, and photodetector noise. We consider a bistatic imaging geometry and quantify the resolution impact of nonuniform Kolmogorov-spectrum turbulence along the propagation paths. We show that, in some cases, short-exposure intensity averaging can mitigate atmospheric-turbulence-induced resolution loss. Our analysis reveals some key performance differences between computational ghost imaging and conventional active imaging, and identifies scenarios in which theory predicts that the former will perform better than the latter.

摘要

计算鬼成像技术是一种结合了单像素探测器的结构化照明有源成像技术,在遥感领域具有潜在应用价值。在此,我们报告一种获取目标物体二维空间傅里叶变换(可通过反演得到传统图像)的架构。我们在存在大气湍流、背景辐射和光电探测器噪声等实际限制的情况下,确定其图像特征、分辨率和信噪比。我们考虑一种双基地成像几何结构,并量化沿传播路径的非均匀柯尔莫哥洛夫谱湍流对分辨率的影响。我们表明,在某些情况下,短曝光强度平均可以减轻大气湍流引起的分辨率损失。我们的分析揭示了计算鬼成像与传统有源成像之间的一些关键性能差异,并确定了理论预测前者将比后者表现更好的场景。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验