Suppr超能文献

基于稀疏约束的高分辨率远场鬼成像

High-resolution far-field ghost imaging via sparsity constraint.

作者信息

Gong Wenlin, Han Shensheng

机构信息

Key Laboratory for Quantum Optics and Center for Cold Atom Physics of CAS, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, 201800, China.

出版信息

Sci Rep. 2015 Mar 19;5:9280. doi: 10.1038/srep09280.

Abstract

Ghost imaging (GI) is a method to nonlocally image an object with a single-pixel detector. However, the speckle's transverse size at the object plane limits the system's imaging resolution for conventional GI linear reconstruction algorithm. By combining the sparsity constraint of imaging object with ghost imaging method, we demonstrate experimentally that ghost imaging via sparsity constraint (GISC) can dramatically enhance the imaging resolution even using the random measurements far below the Nyquist limit. The image reconstruction algorithm of GISC is based on compressive sensing. Factors affecting the reconstruction quality of high-resolution GISC, such as the receiving system's numerical aperture and the object's sparse representation basis, are also investigated experimentally. This high-resolution imaging technique will have great applications in the microscopy and remote-sensing areas.

摘要

鬼成像(GI)是一种使用单像素探测器对物体进行非局部成像的方法。然而,对于传统的GI线性重建算法,物平面上散斑的横向尺寸限制了系统的成像分辨率。通过将成像物体的稀疏性约束与鬼成像方法相结合,我们通过实验证明,即使使用远低于奈奎斯特极限的随机测量值,基于稀疏性约束的鬼成像(GISC)也能显著提高成像分辨率。GISC的图像重建算法基于压缩感知。我们还通过实验研究了影响高分辨率GISC重建质量的因素,如接收系统的数值孔径和物体的稀疏表示基。这种高分辨率成像技术将在显微镜和遥感领域有广泛的应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6dd4/4365410/bcd01908bc92/srep09280-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验