Suppr超能文献

斜视猴中脑近反应区细胞的反应。

Responses of cells in the midbrain near-response area in monkeys with strabismus.

机构信息

College of Optometry, University of Houston, TX 77204, USA.

出版信息

Invest Ophthalmol Vis Sci. 2012 Jun 22;53(7):3858-64. doi: 10.1167/iovs.11-9145.

Abstract

PURPOSE

To investigate whether neuronal activity within the supraoculomotor area (SOA-monosynaptically connected to medial rectus motoneurons and encode vergence angle) of strabismic monkeys was correlated with the angle of horizontal misalignment and therefore helps to define the state of strabismus.

METHODS

Single-cell neural activity was recorded from SOA neurons in two monkeys with exotropia as they performed eye movement tasks during monocular viewing.

RESULTS

Horizontal strabismus angle varied depending on eye of fixation (dissociated horizontal deviation) and the activity of SOA cells (n = 35) varied in correlation with the angle of strabismus. Both near-response (cells that showed larger firing rates for smaller angles of exotropia) and far-response (cells that showed lower firing rates for smaller angles of exotropia) cells were identified. SOA cells showed no modulation of activity with changes in conjugate eye position as tested during smooth-pursuit, thereby verifying that the responses were related to binocular misalignment. SOA cell activity was also not correlated with change in horizontal misalignment due to A-patterns of strabismus. Comparison of SOA population activity in strabismic animals and normal monkeys (described in the literature) show that both neural thresholds and neural sensitivities are altered in the strabismic animals compared with the normal animals.

CONCLUSIONS

SOA cell activity is important in determining the state of horizontal strabismus, possibly by altering vergence tone in extraocular muscle. The lack of correlated SOA activity with changes in misalignment due to A/V patterns suggest that circuits mediating horizontal strabismus angle and those that mediate A/V patterns are different.

摘要

目的

研究斜视猴的上眼球运动区(SOA-与内直肌运动神经元单突触连接并编码聚散角)内的神经元活动是否与水平偏斜角相关,从而有助于确定斜视的状态。

方法

在两只外斜视猴进行单眼视觉任务时,记录 SOA 神经元的单细胞神经活动。

结果

水平斜视角度随注视眼的变化而变化(分离性水平偏斜),SOA 细胞的活动与斜视角度相关(n=35)。确定了近反应(对于较小的外斜视角度,细胞放电率较大的细胞)和远反应(对于较小的外斜视角度,细胞放电率较低的细胞)细胞。在平滑追踪期间测试了 SOA 细胞在共轭眼位置变化时的活动,没有发现活动的调制,从而验证了这些反应与双眼失配有关。SOA 细胞的活动也与由于斜视的 A 模式引起的水平失配的变化无关。与斜视动物和正常猴子(文献中描述)的 SOA 群体活动进行比较,发现与正常动物相比,斜视动物的神经阈值和神经敏感性都发生了改变。

结论

SOA 细胞的活动对于确定水平斜视的状态很重要,可能通过改变眼外肌的聚散张力来实现。由于 A/V 模式引起的失配变化与 SOA 活动无相关性表明,调节水平斜视角度的回路与调节 A/V 模式的回路不同。

相似文献

1
Responses of cells in the midbrain near-response area in monkeys with strabismus.
Invest Ophthalmol Vis Sci. 2012 Jun 22;53(7):3858-64. doi: 10.1167/iovs.11-9145.
2
Cells in the supraoculomotor area in monkeys with strabismus show activity related to the strabismus angle.
Ann N Y Acad Sci. 2011 Sep;1233:85-90. doi: 10.1111/j.1749-6632.2011.06146.x.
3
Responses of medial rectus motoneurons in monkeys with strabismus.
Invest Ophthalmol Vis Sci. 2011 Aug 24;52(9):6697-705. doi: 10.1167/iovs.11-7402.
4
Correlation of cross-axis eye movements and motoneuron activity in non-human primates with "A" pattern strabismus.
Invest Ophthalmol Vis Sci. 2007 Feb;48(2):665-74. doi: 10.1167/iovs.06-0249.
5
Activity of near-response cells during disconjugate saccades in strabismic monkeys.
J Neurophysiol. 2018 Nov 1;120(5):2282-2295. doi: 10.1152/jn.00219.2018. Epub 2018 Aug 15.
6
Neural Plasticity Following Surgical Correction of Strabismus in Monkeys.
Invest Ophthalmol Vis Sci. 2018 Oct 1;59(12):5011-5021. doi: 10.1167/iovs.18-25245.
7
Dynamic properties of medial rectus motoneurons during vergence eye movements.
J Neurophysiol. 1992 Jan;67(1):64-74. doi: 10.1152/jn.1992.67.1.64.
8
Response Properties of Cells Within the Rostral Superior Colliculus of Strabismic Monkeys.
Invest Ophthalmol Vis Sci. 2019 Oct 1;60(13):4292-4302. doi: 10.1167/iovs.19-27786.
9
Ocular motor behavior in macaques with surgical exotropia.
J Neurophysiol. 2007 Dec;98(6):3411-22. doi: 10.1152/jn.00839.2007. Epub 2007 Oct 10.

引用本文的文献

1
Objective assessment of eye alignment and disparity-driven vergence in Parkinson's disease.
Front Aging Neurosci. 2023 Oct 31;15:1217765. doi: 10.3389/fnagi.2023.1217765. eCollection 2023.
2
Monitoring Eye Movement in Patients with Parkinson's Disease: What Can It Tell Us?
Eye Brain. 2023 Jul 24;15:101-112. doi: 10.2147/EB.S384763. eCollection 2023.
3
Brainstem sources of input to the central mesencephalic reticular formation in the macaque.
Exp Brain Res. 2023 Aug;241(8):2145-2162. doi: 10.1007/s00221-023-06641-6. Epub 2023 Jul 20.
5
A Novel Tectal/Pretectal Population of Premotor Lens Accommodation Neurons.
Invest Ophthalmol Vis Sci. 2022 Jan 3;63(1):35. doi: 10.1167/iovs.63.1.35.
6
Fixation eye movement abnormalities and stereopsis recovery following strabismus repair.
Sci Rep. 2021 Jul 13;11(1):14417. doi: 10.1038/s41598-021-93919-w.
7
Computational models to delineate 3D gaze-shift strategies in Parkinson's disease.
J Neural Eng. 2021 Jul 19;18(4). doi: 10.1088/1741-2552/ac123e.
8
Cerebellar projections to the macaque midbrain tegmentum: Possible near response connections.
Vis Neurosci. 2021 May 12;38:E007. doi: 10.1017/S0952523821000067.
9
Childhood Onset Strabismus: A Neurotrophic Factor Hypothesis.
J Binocul Vis Ocul Motil. 2021 Apr-Jun;71(2):35-40. doi: 10.1080/2576117X.2021.1893585. Epub 2021 Apr 19.
10
Neural control of rapid binocular eye movements: Saccade-vergence burst neurons.
Proc Natl Acad Sci U S A. 2020 Nov 17;117(46):29123-29132. doi: 10.1073/pnas.2015318117. Epub 2020 Nov 2.

本文引用的文献

1
Cells in the supraoculomotor area in monkeys with strabismus show activity related to the strabismus angle.
Ann N Y Acad Sci. 2011 Sep;1233:85-90. doi: 10.1111/j.1749-6632.2011.06146.x.
2
Responses of medial rectus motoneurons in monkeys with strabismus.
Invest Ophthalmol Vis Sci. 2011 Aug 24;52(9):6697-705. doi: 10.1167/iovs.11-7402.
3
Expansion of the CHN1 strabismus phenotype.
Invest Ophthalmol Vis Sci. 2011 Aug 11;52(9):6321-8. doi: 10.1167/iovs.11-7950.
4
Strabismus in pediatric lens disorders.
J Pediatr Ophthalmol Strabismus. 2011 May-Jun;48(3):163-6. doi: 10.3928/01913913-20100618-05. Epub 2010 Jun 23.
5
Recent progress in understanding congenital cranial dysinnervation disorders.
J Neuroophthalmol. 2011 Mar;31(1):69-77. doi: 10.1097/WNO.0b013e31820d0756.
6
Evaluation of refraction in a statistically significant sample: changes according to age and strabismus.
J Pediatr Ophthalmol Strabismus. 2009 Sep-Oct;46(5):266-72. doi: 10.3928/01913913-20090903-04. Epub 2009 Sep 22.
7
Alternating fixation and saccade behavior in nonhuman primates with alternating occlusion-induced exotropia.
Invest Ophthalmol Vis Sci. 2009 Aug;50(8):3703-10. doi: 10.1167/iovs.08-2772. Epub 2009 Mar 11.
9
Ocular motor behavior in macaques with surgical exotropia.
J Neurophysiol. 2007 Dec;98(6):3411-22. doi: 10.1152/jn.00839.2007. Epub 2007 Oct 10.
10
Strabismus associated with thyroid eye disease.
Curr Opin Ophthalmol. 2007 Sep;18(5):361-5. doi: 10.1097/ICU.0b013e32827038f2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验