IEEE Trans Image Process. 2012 Aug;21(8):3364-77. doi: 10.1109/TIP.2012.2197010. Epub 2012 May 1.
We present a new image quality assessment (IQA) algorithm based on the phase and magnitude of the 2D (twodimensional) Discrete Fourier Transform (DFT). The basic idea is to compare the phase and magnitude of the reference and distorted images to compute the quality score. However, it is well known that the Human Visual Systems (HVSs) sensitivity to different frequency components is not the same. We accommodate this fact via a simple yet effective strategy of nonuniform binning of the frequency components. This process also leads to reduced space representation of the image thereby enabling the reduced-reference (RR) prospects of the proposed scheme. We employ linear regression to integrate the effects of the changes in phase and magnitude. In this way, the required weights are determined via proper training and hence more convincing and effective. Lastly, using the fact that phase usually conveys more information than magnitude, we use only the phase for RR quality assessment. This provides the crucial advantage of further reduction in the required amount of reference image information. The proposed method is therefore further scalable for RR scenarios. We report extensive experimental results using a total of 9 publicly available databases: 7 image (with a total of 3832 distorted images with diverse distortions) and 2 video databases (totally 228 distorted videos). These show that the proposed method is overall better than several of the existing fullreference (FR) algorithms and two RR algorithms. Additionally, there is a graceful degradation in prediction performance as the amount of reference image information is reduced thereby confirming its scalability prospects. To enable comparisons and future study, a Matlab implementation of the proposed algorithm is available at http://www.ntu.edu.sg/home/wslin/reduced_phase.rar.
我们提出了一种新的基于二维(2D)离散傅里叶变换(DFT)的相位和幅度的图像质量评估(IQA)算法。基本思想是比较参考图像和失真图像的相位和幅度来计算质量分数。然而,众所周知,人类视觉系统(HVS)对不同频率分量的敏感程度是不同的。我们通过对频率分量进行简单而有效的非均匀分箱策略来适应这一事实。这个过程也导致了图像的空间表示减少,从而使提出的方案具有减少参考(RR)的前景。我们采用线性回归来整合相位和幅度变化的影响。通过适当的训练,确定所需的权重,从而更具说服力和有效性。最后,利用相位通常比幅度传递更多信息的事实,我们仅使用相位进行 RR 质量评估。这提供了进一步减少所需参考图像信息量的关键优势。因此,该方法可进一步扩展到 RR 场景。我们使用总共 9 个公共可用数据库报告了广泛的实验结果:7 个图像(共有 3832 个具有各种失真的失真图像)和 2 个视频数据库(共有 228 个失真视频)。这些结果表明,该方法总体上优于一些现有的全参考(FR)算法和两个 RR 算法。此外,随着参考图像信息量的减少,预测性能逐渐下降,从而确认了其可扩展性前景。为了进行比较和未来的研究,我们在 http://www.ntu.edu.sg/home/wslin/reduced_phase.rar 上提供了该算法的 Matlab 实现。