Synthetic Perceptive Emotive and Cognitive Systems (SPECS), Universitat Pompeu Fabra Barcelona, Spain.
Front Comput Neurosci. 2012 May 3;6:21. doi: 10.3389/fncom.2012.00021. eCollection 2012.
It has been proposed that the dense excitatory local connectivity of the neo-cortex plays a specific role in the transformation of spatial stimulus information into a temporal representation or a temporal population code (TPC). TPC provides for a rapid, robust, and high-capacity encoding of salient stimulus features with respect to position, rotation, and distortion. The TPC hypothesis gives a functional interpretation to a core feature of the cortical anatomy: its dense local and sparse long-range connectivity. Thus far, the question of how the TPC encoding can be decoded in downstream areas has not been addressed. Here, we present a neural circuit that decodes the spectral properties of the TPC using a biologically plausible implementation of a Haar transform. We perform a systematic investigation of our model in a recognition task using a standardized stimulus set. We consider alternative implementations using either regular spiking or bursting neurons and a range of spectral bands. Our results show that our wavelet readout circuit provides for the robust decoding of the TPC and further compresses the code without loosing speed or quality of decoding. We show that in the TPC signal the relevant stimulus information is present in the frequencies around 100 Hz. Our results show that the TPC is constructed around a small number of coding components that can be well decoded by wavelet coefficients in a neuronal implementation. The solution to the TPC decoding problem proposed here suggests that cortical processing streams might well consist of sequential operations where spatio-temporal transformations at lower levels forming a compact stimulus encoding using TPC that are subsequently decoded back to a spatial representation using wavelet transforms. In addition, the results presented here show that different properties of the stimulus might be transmitted to further processing stages using different frequency components that are captured by appropriately tuned wavelet-based decoders.
有人提出,新皮层的密集兴奋性局部连接在将空间刺激信息转换为时间表示或时间群体代码(TPC)方面起着特定的作用。TPC 提供了一种快速、稳健和大容量的编码方法,可以对位置、旋转和变形等显著刺激特征进行编码。TPC 假说为皮层解剖结构的一个核心特征提供了功能解释:其密集的局部和稀疏的长程连接。到目前为止,关于 TPC 编码如何在下游区域解码的问题尚未得到解决。在这里,我们提出了一种神经回路,该回路使用 Haar 变换的生物上合理的实现来解码 TPC 的谱特性。我们使用标准化刺激集在识别任务中对我们的模型进行了系统的研究。我们考虑了使用规则放电或爆发神经元以及一系列谱带的替代实现。我们的结果表明,我们的小波读出电路为 TPC 的稳健解码提供了支持,并进一步压缩了代码,而不会降低解码的速度或质量。我们表明,在 TPC 信号中,相关的刺激信息存在于 100 Hz 左右的频率中。我们的结果表明,TPC 是围绕少数几个编码组件构建的,这些组件可以在神经元实现中通过小波系数很好地解码。这里提出的 TPC 解码问题的解决方案表明,皮质处理流可能由顺序操作组成,其中较低层次的时空变换使用 TPC 形成紧凑的刺激编码,然后使用小波变换将其解码回空间表示。此外,这里呈现的结果表明,使用适当调谐的基于小波的解码器捕获的不同频率分量,可以将刺激的不同特性传输到进一步的处理阶段。