Suppr超能文献

混合单电子/多电子方法用于分子团簇的离子态。

Hybrid one-electron/many-electron methods for ionized states of molecular clusters.

机构信息

Department of Chemistry, Virginia Tech, Blacksburg, VA 24061, USA.

出版信息

Phys Chem Chem Phys. 2012 Jun 7;14(21):7863-71. doi: 10.1039/c2cp40222j. Epub 2012 May 4.

Abstract

To describe singly-ionized states of molecular clusters we devised an effective Hamiltonian approach that combines (1) accurate monomer ionization potentials from many-electron wave functions with (2) polarization shifts and (3) effective monomer couplings obtained from a simple one-electron approach (the superposition-of-fragment-states (SFS) method [Valeev et al., J. Am. Chem. Soc., 2006, 128, 9882]). The accuracy of the intermolecular coupling parameters evaluated with SFS Hartree-Fock (HF) and Density-Functional-Theory (DFT) variants was evaluated for several weakly-bound dimers and compared against the state-of-the-art equation-of-motion ionization-potential coupled-cluster singles and doubles (EOM-IP-CCSD) data of Krylov and co-workers. The SFS-HF method produces coupling integrals accurate to a few percent, whereas SFS-DFT predictions are substantially worse. A hybrid approach combining SFS-HF couplings and shifts with EOM-IP-CCSD ionization potentials of monomers (denoted as SFS-EOM-IP-CCSD) was applied to ionized states of two conformers of a benzene dimer and ten representative DNA base pairs. The 16 considered SFS-EOM-IP-CCSD ionization potentials of the benzene dimer differed from the reference EOM-IP-CCSD IPs of Krylov and co-workers [Pieniazek et al., J. Chem. Phys. 2007, 127, 044317; Bravaya et al., Phys. Chem. Chem. Phys. 2010, 12, 2261] by less than 0.1 eV on average, and at most by 0.2 eV. For the DNA base pairs the mean absolute (median) deviation of the SFS-EOM-IP-CCSD IPs was 0.27 (0.23) eV; several deviations for non-Koopmans states were as large as 0.9 eV. The SFS-EOM-IP-CCSD method can be readily applied to large molecular clusters with computational effort scaling cubically with the size of the cluster.

摘要

为了描述分子簇的单离子态,我们设计了一种有效的哈密顿量方法,该方法结合了(1)多电子波函数的精确单体电离势,(2)极化位移和(3)从简单的单电子方法(片段态叠加(SFS)方法[Valeev 等人,J. Am. Chem. Soc.,2006,128,9882])获得的有效单体耦合。使用 SFS Hartree-Fock(HF)和密度泛函理论(DFT)变体评估的分子间耦合参数的准确性,用于评估几个弱结合二聚体,并与 Krylov 及其同事的最新运动方程电离势耦合簇单和双(EOM-IP-CCSD)数据进行比较。SFS-HF 方法产生的耦合积分精度可达百分之几,而 SFS-DFT 预测则差得多。一种将 SFS-HF 耦合和位移与单体的 EOM-IP-CCSD 电离势相结合的混合方法(表示为 SFS-EOM-IP-CCSD)应用于苯二聚体两个构象体和十个代表性 DNA 碱基对的离子化态。考虑的 16 个 SFS-EOM-IP-CCSD 苯二聚体的电离势与 Krylov 及其同事的参考 EOM-IP-CCSD IP[Pieniazek 等人,J. Chem. Phys.,2007,127,044317;Bravaya 等人,Phys. Chem. Chem. Phys.,2010,12,2261]相差不到 0.1eV,最大相差 0.2eV。对于 DNA 碱基对,SFS-EOM-IP-CCSD IP 的平均绝对(中位数)偏差为 0.27(0.23)eV;几个非 Koopmans 态的偏差高达 0.9eV。SFS-EOM-IP-CCSD 方法可以很容易地应用于具有与簇大小成三次方比例的计算工作量的大型分子簇。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验