Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, Cluj-Napoca, Romania.
J Phys Chem A. 2012 May 31;116(21):5227-34. doi: 10.1021/jp302052u. Epub 2012 May 18.
Structures of the beryllium-centered germanium clusters Be@Ge(n)(z) (n = 8, 7, 6; z = -4, -2, 0, +2) have been investigated by density functional theory to provide some insight regarding the smallest metal cluster that can encapsulate an interstitial atom. The lowest energy structures of the eight-vertex Be@Ge(8)(z) clusters (z = -4, -2, 0, +2) all have the Be atom at the center of a closed polyhedron, namely, a D(4d) square antiprism for Be@Ge(8)(4-), a D(2d) bisdisphenoid for Be@Ge(8)(2-), an ideal O(h) cube for Be@Ge(8), and a C(2v) distorted cube for Be@Ge(8)(2+). The Be-centered cubic structures predicted for Be@Ge(8) and Be@Ge(8)(2+) differ from the previously predicted lowest energy structures for the isoelectronic Ge(8)(2-) and Ge(8). This appears to be related to the larger internal volume of the cube relative to other closed eight-vertex polyhedra. The lowest energy structures for the smaller seven- and six-vertex clusters Be@Ge(n)(z) (n = 7, 6; z = -4, -2, 0, +2) no longer have the Be atom at the center of a closed Ge(n) polyhedron. Instead, either the Ge(n) polyhedron has opened up to provide a larger volume for the Be atom or the Be atom has migrated to the surface of the polyhedron. However, higher energy structures are found in which the Be atom is located at the center of a Ge(n) (n = 7, 6) polyhedron. Examples of such structures are a centered C(2v) capped trigonal prismatic structure for Be@Ge(7)(2-), a centered D(5h) pentagonal bipyramidal structure for Be@Ge(7), a centered D(3h) trigonal prismatic structure for Be@Ge(6)(4-), and a centered octahedral structure for Be@Ge(6). Cluster buildup reactions of the type Be@Ge(n)(z) + Ge(2) → Be@Ge(n+2)(z) (n = 6, 8; z = -4, -2, 0, +2) are all predicted to be highly exothermic. This suggests that interstitial clusters having an endohedral atom inside a bare post transition element polyhedron with eight or fewer vertices are less than the optimum size. This is consistent with the experimental observation of several types of 10-vertex polyhedral bare post transition element clusters with interstitial atoms but the failure to observe such clusters with external polyhedra having eight or fewer vertices.
采用密度泛函理论研究了铍中心锗团簇 Be@Ge(n)(z)(n = 8、7、6;z = -4、-2、0、+2)的结构,以期了解能够包裹间隙原子的最小金属团簇。八顶点 Be@Ge(8)(z) 团簇(z = -4、-2、0、+2)的最低能量结构均具有位于封闭多面体中心的铍原子,即 Be@Ge(8)(4-) 的 D(4d) 正方形反棱柱、Be@Ge(8)(2-) 的 D(2d) 双面体、Be@Ge(8) 的理想 O(h) 立方体和 Be@Ge(8)(2+) 的 C(2v) 畸变立方体。对于 Be@Ge(8) 和 Be@Ge(8)(2+),预测的铍中心立方结构与先前预测的等电子 Ge(8)(2-) 和 Ge(8) 的最低能量结构不同。这似乎与相对于其他封闭的八顶点多面体,立方体内的体积更大有关。较小的七顶点和六顶点 Be@Ge(n)(z)(n = 7、6;z = -4、-2、0、+2)团簇的最低能量结构中,铍原子不再位于封闭的 Ge(n) 多面体的中心。相反,要么 Ge(n) 多面体已经打开,为铍原子提供了更大的体积,要么铍原子已经迁移到多面体的表面。然而,在更高能量的结构中,发现了位于 Ge(n)(n = 7、6)多面体中心的 Be 原子。例如,Be@Ge(7)(2-) 的中心 C(2v) 盖帽三角棱柱结构、Be@Ge(7) 的中心 D(5h) 五重双锥结构、Be@Ge(6)(4-) 的中心 D(3h) 三角棱柱结构和 Be@Ge(6) 的中心八面体结构。预测类型为 Be@Ge(n)(z) + Ge(2) → Be@Ge(n+2)(z)(n = 6、8;z = -4、-2、0、+2)的团簇加成反应都是高度放热的。这表明,具有间隙原子的内包过渡金属多面体的八或更少顶点的团簇小于最佳尺寸。这与实验观察到的几种具有间隙原子的十顶点裸过渡金属团簇一致,但未能观察到具有八或更少顶点的外部多面体的此类团簇。