Suppr超能文献

用非正态数据检验相关性的显著性:皮尔逊、斯皮尔曼、转换和重抽样方法的比较。

Testing the significance of a correlation with nonnormal data: comparison of Pearson, Spearman, transformation, and resampling approaches.

机构信息

Department of Psychology, College of Charleston, 66 George Street, Charleston, SC 29424, USA.

出版信息

Psychol Methods. 2012 Sep;17(3):399-417. doi: 10.1037/a0028087. Epub 2012 May 7.

Abstract

It is well known that when data are nonnormally distributed, a test of the significance of Pearson's r may inflate Type I error rates and reduce power. Statistics textbooks and the simulation literature provide several alternatives to Pearson's correlation. However, the relative performance of these alternatives has been unclear. Two simulation studies were conducted to compare 12 methods, including Pearson, Spearman's rank-order, transformation, and resampling approaches. With most sample sizes (n ≥ 20), Type I and Type II error rates were minimized by transforming the data to a normal shape prior to assessing the Pearson correlation. Among transformation approaches, a general purpose rank-based inverse normal transformation (i.e., transformation to rankit scores) was most beneficial. However, when samples were both small (n ≤ 10) and extremely nonnormal, the permutation test often outperformed other alternatives, including various bootstrap tests.

摘要

众所周知,当数据呈非正态分布时,皮尔逊 r 检验的显著性可能会导致Ⅰ类错误率增加和功效降低。统计学教材和模拟文献提供了几种替代皮尔逊相关的方法。然而,这些替代方法的相对性能尚不清楚。进行了两项模拟研究,比较了包括皮尔逊、斯皮尔曼等级相关、转换和重采样方法在内的 12 种方法。对于大多数样本量(n≥20),通过在评估皮尔逊相关性之前将数据转换为正态形状,可以最小化Ⅰ类和Ⅱ类错误率。在转换方法中,最有益的是一种通用的基于等级的逆正态转换(即转换为秩次得分)。然而,当样本既小(n≤10)又极不正常时,排列检验通常优于其他替代方法,包括各种自举检验。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验