Suppr超能文献

XCSF 中的动态遗传编程。

Dynamical genetic programming in XCSF.

机构信息

Department of Computer Science and Creative Technologies, University of the West of England, Bristol, BS16 1QY, United Kingdom

出版信息

Evol Comput. 2013 Fall;21(3):361-87. doi: 10.1162/EVCO_a_00080. Epub 2012 Jun 25.

Abstract

A number of representation schemes have been presented for use within learning classifier systems, ranging from binary encodings to artificial neural networks. This paper presents results from an investigation into using a temporally dynamic symbolic representation within the XCSF learning classifier system. In particular, dynamical arithmetic networks are used to represent the traditional condition-action production system rules to solve continuous-valued reinforcement learning problems and to perform symbolic regression, finding competitive performance with traditional genetic programming on a number of composite polynomial tasks. In addition, the network outputs are later repeatedly sampled at varying temporal intervals to perform multistep-ahead predictions of a financial time series.

摘要

已经提出了许多表示方案用于学习分类器系统中,从二进制编码到人工神经网络。本文介绍了在 XCSF 学习分类器系统中使用时变符号表示的研究结果。特别是,动态算术网络用于表示传统的条件-动作产生系统规则,以解决连续值强化学习问题并执行符号回归,在多个复合多项式任务上与传统遗传编程具有竞争性能。此外,网络输出稍后在不同的时间间隔重复采样,以对金融时间序列进行多步预测。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验