Yoshihara Motojiro
Department of Neurobiology, University of Massachusetts Medical School, USA.
J Vis Exp. 2012 Apr 26(62):3625. doi: 10.3791/3625.
To study neuronal networks in terms of their function in behavior, we must analyze how neurons operate when each behavioral pattern is generated. Thus, simultaneous recordings of neuronal activity and behavior are essential to correlate brain activity to behavior. For such behavioral analyses, the fruit fly, Drosophila melanogaster, allows us to incorporate genetically encoded calcium indicators such as GCaMP(1), to monitor neuronal activity, and to use sophisticated genetic manipulations for optogenetic or thermogenetic techniques to specifically activate identified neurons(2-5). Use of a thermogenetic technique has led us to find critical neurons for feeding behavior (Flood et al., under revision). As a main part of feeding behavior, a Drosophila adult extends its proboscis for feeding(6) (proboscis extension response; PER), responding to a sweet stimulus from sensory cells on its proboscis or tarsi. Combining the protocol for PER(7) with a calcium imaging technique(8) using GCaMP3.0(1, 9), I have established an experimental system, where we can monitor activity of neurons in the feeding center - the suboesophageal ganglion (SOG), simultaneously with behavioral observation of the proboscis. I have designed an apparatus ("Fly brain Live Imaging and Electrophysiology Stage": "FLIES") to accommodate a Drosophila adult, allowing its proboscis to freely move while its brain is exposed to the bath for Ca(2+) imaging through a water immersion lens. The FLIES is also appropriate for many types of live experiments on fly brains such as electrophysiological recording or time lapse imaging of synaptic morphology. Because the results from live imaging can be directly correlated with the simultaneous PER behavior, this methodology can provide an excellent experimental system to study information processing of neuronal networks, and how this cellular activity is coupled to plastic processes and memory.
为了从神经元网络在行为中的功能角度进行研究,我们必须分析在每种行为模式产生时神经元是如何运作的。因此,同时记录神经元活动和行为对于将大脑活动与行为相关联至关重要。对于此类行为分析,果蝇(黑腹果蝇)使我们能够纳入诸如GCaMP(1)等基因编码的钙指示剂来监测神经元活动,并使用复杂的基因操作来进行光遗传学或热遗传学技术,以特异性激活已识别的神经元(2 - 5)。热遗传学技术的使用使我们找到了与进食行为相关的关键神经元(Flood等人,正在修订中)。作为进食行为的主要部分,成年果蝇会伸出其喙进行进食(6)(喙伸展反应;PER),以响应来自其喙或跗节上感觉细胞的甜味刺激。将PER的实验方案(7)与使用GCaMP3.0(1, 9)的钙成像技术(8)相结合,我建立了一个实验系统,在该系统中我们可以在观察喙的行为的同时监测进食中枢——咽下神经节(SOG)中神经元的活动。我设计了一种装置(“果蝇大脑实时成像与电生理平台”:“FLIES”)来容纳成年果蝇,使其喙能够自由移动,同时其大脑通过水浸透镜暴露于用于Ca(2+)成像的浴液中。FLIES也适用于许多类型的果蝇大脑实时实验,如电生理记录或突触形态的延时成像。由于实时成像的结果可以直接与同时进行的PER行为相关联,这种方法可以提供一个出色的实验系统来研究神经元网络的信息处理,以及这种细胞活动是如何与可塑性过程和记忆相耦合的。