Suppr超能文献

基于稀疏性的频域光学相干断层扫描图像去噪

Sparsity based denoising of spectral domain optical coherence tomography images.

作者信息

Fang Leyuan, Li Shutao, Nie Qing, Izatt Joseph A, Toth Cynthia A, Farsiu Sina

出版信息

Biomed Opt Express. 2012 May 1;3(5):927-42. doi: 10.1364/BOE.3.000927. Epub 2012 Apr 12.

Abstract

In this paper, we make contact with the field of compressive sensing and present a development and generalization of tools and results for reconstructing irregularly sampled tomographic data. In particular, we focus on denoising Spectral-Domain Optical Coherence Tomography (SDOCT) volumetric data. We take advantage of customized scanning patterns, in which, a selected number of B-scans are imaged at higher signal-to-noise ratio (SNR). We learn a sparse representation dictionary for each of these high-SNR images, and utilize such dictionaries to denoise the low-SNR B-scans. We name this method multiscale sparsity based tomographic denoising (MSBTD). We show the qualitative and quantitative superiority of the MSBTD algorithm compared to popular denoising algorithms on images from normal and age-related macular degeneration eyes of a multi-center clinical trial. We have made the corresponding data set and software freely available online.

摘要

在本文中,我们与压缩感知领域建立联系,并提出了用于重建不规则采样断层数据的工具和结果的发展与推广。特别地,我们专注于去噪光谱域光学相干断层扫描(SDOCT)体数据。我们利用定制的扫描模式,其中,选定数量的B扫描以更高的信噪比(SNR)成像。我们为这些高信噪比图像中的每一个学习一个稀疏表示字典,并利用这些字典对低信噪比的B扫描进行去噪。我们将此方法命名为基于多尺度稀疏性的断层去噪(MSBTD)。在多中心临床试验中来自正常和年龄相关性黄斑变性眼睛的图像上,我们展示了MSBTD算法相对于流行去噪算法在定性和定量方面的优越性。我们已将相应的数据集和软件免费在线提供。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/78fa/3342198/77ac51869f61/boe-3-5-927-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验