Suppr超能文献

非局部集中稀疏表示在图像恢复中的应用。

Nonlocally centralized sparse representation for image restoration.

机构信息

Key Laboratory of Intelligent Perception and Image Understanding of Education, School of Electronic Engineering, Xidian University, Xi’an 710071, China.

出版信息

IEEE Trans Image Process. 2013 Apr;22(4):1620-30. doi: 10.1109/TIP.2012.2235847. Epub 2012 Dec 21.

Abstract

Sparse representation models code an image patch as a linear combination of a few atoms chosen out from an over-complete dictionary, and they have shown promising results in various image restoration applications. However, due to the degradation of the observed image (e.g., noisy, blurred, and/or down-sampled), the sparse representations by conventional models may not be accurate enough for a faithful reconstruction of the original image. To improve the performance of sparse representation-based image restoration, in this paper the concept of sparse coding noise is introduced, and the goal of image restoration turns to how to suppress the sparse coding noise. To this end, we exploit the image nonlocal self-similarity to obtain good estimates of the sparse coding coefficients of the original image, and then centralize the sparse coding coefficients of the observed image to those estimates. The so-called nonlocally centralized sparse representation (NCSR) model is as simple as the standard sparse representation model, while our extensive experiments on various types of image restoration problems, including denoising, deblurring and super-resolution, validate the generality and state-of-the-art performance of the proposed NCSR algorithm.

摘要

稀疏表示模型将图像块编码为从过完备字典中选择的少数几个原子的线性组合,并且在各种图像恢复应用中已经显示出了有前途的结果。然而,由于观测图像的退化(例如噪声、模糊和/或下采样),传统模型的稀疏表示可能不够准确,无法对原始图像进行真实的重建。为了提高基于稀疏表示的图像恢复的性能,本文引入了稀疏编码噪声的概念,并且图像恢复的目标变为如何抑制稀疏编码噪声。为此,我们利用图像的非局部自相似性来获得原始图像的稀疏编码系数的良好估计,然后将观测图像的稀疏编码系数集中到这些估计值上。所谓的非局部中心化稀疏表示(NCSR)模型与标准稀疏表示模型一样简单,但是我们在各种类型的图像恢复问题(包括去噪、去模糊和超分辨率)上的广泛实验验证了所提出的 NCSR 算法的通用性和最先进的性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验