Huang X Q, Hardison R C, Miller W
Department of Computer Science, Michigan Technological University, Houghton 49931.
Comput Appl Biosci. 1990 Oct;6(4):373-81. doi: 10.1093/bioinformatics/6.4.373.
Existing dynamic-programming algorithms for identifying similar regions of two sequences require time and space proportional to the product of the sequence lengths. Often this space requirement is more limiting than the time requirement. We describe a dynamic-programming local-similarity algorithm that needs only space proportional to the sum of the sequence lengths. The method can also find repeats within a single long sequence. To illustrate the algorithm's potential, we discuss comparison of a 73,360 nucleotide sequence containing the human beta-like globin gene cluster and a corresponding 44,594 nucleotide sequence for rabbit, a problem well beyond the capabilities of other dynamic-programming software.
现有的用于识别两个序列相似区域的动态规划算法所需的时间和空间与序列长度的乘积成正比。通常,这种空间需求比时间需求更具限制性。我们描述了一种动态规划局部相似性算法,该算法只需要与序列长度之和成正比的空间。该方法还可以在单个长序列中找到重复序列。为了说明该算法的潜力,我们讨论了一个包含人类β-珠蛋白基因簇的73360个核苷酸序列与兔子相应的44594个核苷酸序列的比较,这是一个其他动态规划软件无法解决的问题。