Suppr超能文献

通过 mRNA 帽结合蛋白 eIF4E 实现翻译平衡。

Translational homeostasis via the mRNA cap-binding protein, eIF4E.

机构信息

Department of Biochemistry and McGill Cancer Center, McGill University, Montreal, Quebec H3A 1A3, Canada.

出版信息

Mol Cell. 2012 Jun 29;46(6):847-58. doi: 10.1016/j.molcel.2012.04.004. Epub 2012 May 10.

Abstract

Translational control of gene expression plays a key role in many biological processes. Consequently, the activity of the translation apparatus is under tight homeostatic control. eIF4E, the mRNA 5' cap-binding protein, facilitates cap-dependent translation and is a major target for translational control. eIF4E activity is controlled by a family of repressor proteins, termed 4E-binding proteins (4E-BPs). Here, we describe the surprising finding that despite the importance of eIF4E for translation, a drastic knockdown of eIF4E caused only minor reduction in translation. This conundrum can be explained by the finding that 4E-BP1 is degraded in eIF4E-knockdown cells. Hypophosphorylated 4E-BP1, which binds to eIF4E, is degraded, whereas hyperphosphorylated 4E-BP1 is refractory to degradation. We identified the KLHL25-CUL3 complex as the E3 ubiquitin ligase, which targets hypophosphorylated 4E-BP1. Thus, the activity of eIF4E is under homeostatic control via the regulation of the levels of its repressor protein 4E-BP1 through ubiquitination.

摘要

基因表达的翻译调控在许多生物过程中起着关键作用。因此,翻译装置的活性受到严格的动态平衡控制。eIF4E 是 mRNA 5' 帽结合蛋白,促进帽依赖性翻译,是翻译调控的主要靶点。eIF4E 的活性受到一类称为 4E 结合蛋白 (4E-BPs) 的抑制蛋白的控制。在这里,我们描述了一个令人惊讶的发现,尽管 eIF4E 对翻译很重要,但 eIF4E 的严重敲低仅导致翻译的轻微减少。这个难题可以通过发现 4E-BP1 在 eIF4E 敲低细胞中被降解来解释。与 eIF4E 结合的低磷酸化 4E-BP1 被降解,而高度磷酸化的 4E-BP1 则不易降解。我们鉴定出 KLHL25-CUL3 复合物作为 E3 泛素连接酶,它靶向低磷酸化的 4E-BP1。因此,通过泛素化调节其抑制蛋白 4E-BP1 的水平,eIF4E 的活性受到体内平衡控制。

相似文献

1
Translational homeostasis via the mRNA cap-binding protein, eIF4E.
Mol Cell. 2012 Jun 29;46(6):847-58. doi: 10.1016/j.molcel.2012.04.004. Epub 2012 May 10.
2
Characterizing the interaction of the mammalian eIF4E-related protein 4EHP with 4E-BP1.
FEBS Lett. 2004 Apr 23;564(1-2):58-62. doi: 10.1016/S0014-5793(04)00313-8.
3
Translational repression by human 4E-BP1 in yeast specifically requires human eIF4E as target.
J Biol Chem. 1999 Feb 5;274(6):3261-4. doi: 10.1074/jbc.274.6.3261.
4
RhoE inhibits 4E-BP1 phosphorylation and eIF4E function impairing cap-dependent translation.
J Biol Chem. 2009 Dec 18;284(51):35287-96. doi: 10.1074/jbc.M109.050120.
5
Eukaryotic Initiation Factor 4E phosphorylation acts a switch for its binding to 4E-BP1 and mRNA cap assembly.
Biochem Biophys Res Commun. 2020 Jun 25;527(2):489-495. doi: 10.1016/j.bbrc.2020.04.086. Epub 2020 Apr 23.
7
Effects of protein phosphorylation on ubiquitination and stability of the translational inhibitor protein 4E-BP1.
Oncogene. 2008 Jan 31;27(6):811-22. doi: 10.1038/sj.onc.1210678. Epub 2007 Jul 23.
10
Eukaryotic translation initiation is controlled by cooperativity effects within ternary complexes of 4E-BP1, eIF4E, and the mRNA 5' cap.
FEBS Lett. 2013 Dec 11;587(24):3928-34. doi: 10.1016/j.febslet.2013.10.043. Epub 2013 Nov 6.

引用本文的文献

1
Impact of Gemin5 in protein synthesis: phosphoresidues of the dimerization domain regulate ribosome binding.
RNA Biol. 2025 Dec;22(1):1-15. doi: 10.1080/15476286.2025.2540654. Epub 2025 Aug 3.
4
Metabolic rewiring caused by mitochondrial dysfunction promotes mTORC1-dependent skeletal aging.
Sci Adv. 2025 Apr 18;11(16):eads1842. doi: 10.1126/sciadv.ads1842.
5
Technological breakthroughs and advancements in the application of mRNA vaccines: a comprehensive exploration and future prospects.
Front Immunol. 2025 Mar 4;16:1524317. doi: 10.3389/fimmu.2025.1524317. eCollection 2025.
6
Noncanonical feedback loop between "RIP3-MLKL" and "4EBP1-eIF4E" promotes neuronal necroptosis.
MedComm (2020). 2025 Feb 18;6(3):e70107. doi: 10.1002/mco2.70107. eCollection 2025 Mar.
8
Quantitative Top-down Proteomics Revealed Kinase Inhibitor-Induced Proteoform-Level Changes in Cancer Cells.
J Proteome Res. 2025 Jan 3;24(1):303-314. doi: 10.1021/acs.jproteome.4c00778. Epub 2024 Dec 2.
9
hu.MAP3.0: Atlas of human protein complexes by integration of > 25,000 proteomic experiments.
bioRxiv. 2024 Oct 15:2024.10.11.617930. doi: 10.1101/2024.10.11.617930.
10

本文引用的文献

1
mTORC1-mediated cell proliferation, but not cell growth, controlled by the 4E-BPs.
Science. 2010 May 28;328(5982):1172-6. doi: 10.1126/science.1187532.
2
Ku-0063794 is a specific inhibitor of the mammalian target of rapamycin (mTOR).
Biochem J. 2009 Jun 12;421(1):29-42. doi: 10.1042/BJ20090489.
3
Active-site inhibitors of mTOR target rapamycin-resistant outputs of mTORC1 and mTORC2.
PLoS Biol. 2009 Feb 10;7(2):e38. doi: 10.1371/journal.pbio.1000038.
4
Control of eIF4E cellular localization by eIF4E-binding proteins, 4E-BPs.
RNA. 2008 Jul;14(7):1318-27. doi: 10.1261/rna.950608. Epub 2008 May 30.
5
Targeting the eukaryotic translation initiation factor 4E for cancer therapy.
Cancer Res. 2008 Feb 1;68(3):631-4. doi: 10.1158/0008-5472.CAN-07-5635.
6
A hypoxia-controlled cap-dependent to cap-independent translation switch in breast cancer.
Mol Cell. 2007 Nov 9;28(3):501-12. doi: 10.1016/j.molcel.2007.10.019.
8
Effects of protein phosphorylation on ubiquitination and stability of the translational inhibitor protein 4E-BP1.
Oncogene. 2008 Jan 31;27(6):811-22. doi: 10.1038/sj.onc.1210678. Epub 2007 Jul 23.
9
On the art of identifying effective and specific siRNAs.
Nat Methods. 2006 Sep;3(9):670-6. doi: 10.1038/nmeth911.
10
Ubiquitination and proteasome-dependent degradation of human eukaryotic translation initiation factor 4E.
J Biol Chem. 2006 Jul 28;281(30):20788-20800. doi: 10.1074/jbc.M600563200. Epub 2006 May 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验