Suppr超能文献

结构、EPR、光学和拉曼研究的 Nd2O3:Cu2+ 纳米荧光粉。

Structural, EPR, optical and Raman studies of Nd2O3:Cu2+ nanophosphors.

机构信息

Department of Humanities, PVP Polytechnic, Dr. AIT Campus, Bangalore 560 056, India.

出版信息

Spectrochim Acta A Mol Biomol Spectrosc. 2012 Aug;94:365-71. doi: 10.1016/j.saa.2012.03.057. Epub 2012 Mar 29.

Abstract

Nanocrystalline Nd(2)O(3):Cu(2+) (2mol %) phosphors have been prepared by a low temperature solution combustion technique. Powder X-ray diffraction (PXRD) results confirm that hexagonal A-type Nd(2)O(3) (900°C, 3h) and the lattice parameters have been evaluated by Rietveld refinement. Surface morphology of as-formed and Cu(2+) doped Nd(2)O(3) phosphors show that the particles are irregular in shape and porous in nature. TEM results also confirm the nature and size of the particles. The EPR spectrum exhibits two resonance signals with effective g values at g(ǀǀ)≈2.12 and g(⊥)≈2.04. The g values indicate that the site symmetry of Cu(2+) ions is octahedral symmetry with elongated tetragonal distortion. Raman studies show major peaks, which are assigned, to F(g) and combination of A(g)+E(g) modes. It is observed that the Raman peaks and intensity have been reduced in Cu(2+) doped samples. UV-Visible absorption spectra exhibit a strong and broad absorption band at ∼240nm. Further, the absorption peak shifts to ∼14nm in Cu(2+) doped samples. The optical band gap is estimated to be 5.28eV for Cu doped Nd(2)O(3) nanoparticles which are higher than the bulk Nd(2)O(3) (4.7eV). This can be attributed to the quantum confinement effect of the nanoparticles.

摘要

纳米晶 Nd(2)O(3):Cu(2+) (2mol %)荧光粉通过低温溶液燃烧技术制备。粉末 X 射线衍射 (PXRD) 结果证实了六方 A 型 Nd(2)O(3)(900°C,3h)的存在,并且通过 Rietveld 精修评估了晶格参数。形成的和 Cu(2+)掺杂 Nd(2)O(3)荧光粉的表面形态表明,颗粒形状不规则,具有多孔性。TEM 结果也证实了颗粒的性质和大小。EPR 光谱显示两个共振信号,有效 g 值为 g(ǀǀ)≈2.12 和 g(⊥)≈2.04。g 值表明 Cu(2+)离子的点群对称性为拉长的四方畸变的八面体对称性。拉曼研究表明主要峰,其分配给 F(g)和 A(g)+E(g)模式的组合。观察到在 Cu(2+)掺杂样品中拉曼峰和强度降低。紫外-可见吸收光谱在 ∼240nm 处显示出强而宽的吸收带。此外,在 Cu(2+)掺杂样品中吸收峰向 ∼14nm 移动。Cu 掺杂 Nd(2)O(3)纳米粒子的光学带隙估计为 5.28eV,高于体相 Nd(2)O(3)(4.7eV)。这可以归因于纳米粒子的量子限制效应。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验