Center for Meat Safety & Quality, Dept of Animal Sciences, Colorado State Univ, 1171 Campus Delivery, Fort Collins, CO 80523-1171, USA.
J Food Sci. 2012 Jun;77(6):M343-7. doi: 10.1111/j.1750-3841.2012.02695.x. Epub 2012 May 14.
Studies examined the effects of meat-contact material types, inoculation substrate, presence of air at the liquid-solid surface interface during incubation, and incubation substrate on the attachment/transfer and subsequent biofilm formation by Escherichia coli O157:H7 on beef carcass fabrication surface materials. Materials studied as 2 × 5 cm coupons included stainless steel, acetal, polypropylene, and high-density polyethylene. A 6-strain rifampicin-resistant E. coli O157:H7 composite was used to inoculate (6 log CFU/mL, g, or cm²) tryptic soy broth (TSB), beef fat/lean tissue homogenate (FLH), conveyor belt-runoff fluids, ground beef, or beef fat. Coupons of each material were submerged (4 °C, 30 min) in the inoculated fluids or ground beef, or placed between 2 pieces of inoculated beef fat with pressure (20 kg) applied. Attachment/transfer of the pathogen was surface material and substrate dependent, although beef fat appeared to negate differences among surface materials. Beef fat was the most effective (P < 0.05) inoculation substrate, followed by ground beef, FLH, and TSB. Incubation (15 °C, 16 d) of beef fat-inoculated coupons in a beef fat homogenate (pH 4.21) allowed the pathogen to survive and grow on coupon surfaces, with maximal biofilm formation observed between 2 and 8 d of storage and when air was present at the liquid-solid interface. The results indicated that the process of fabricating beef carcasses may be conducive to the attachment of E. coli O157:H7 onto meat-contact surfaces and subsequent biofilm formation. Furthermore, it is recommended that substrates found in beef fabrication settings, rather than laboratory culture media, be used in studies designed to investigate E. coli O157:H7 biofilm development and control in these environments.
Findings of this study provide knowledge on the effect of type of beef carcass fabrication surface material, fabrication-floor fluids and residues, and incubation conditions on attachment/transfer and subsequent biofilm formation by E. coli O157:H7. The results highlight the importance of thoroughly cleaning soiled surfaces to remove all remnants of beef fat or other organic material that may harbor or protect microbial contaminants during otherwise lethal antimicrobial interventions.
本研究考察了肉接触材料类型、接种底物、孵育过程中液体-固体表面界面处空气的存在以及孵育底物对大肠杆菌 O157:H7 在牛肉胴体加工表面材料上的附着/转移和随后生物膜形成的影响。作为 2×5cm 小方片研究的材料包括不锈钢、乙缩醛、聚丙烯和高密度聚乙烯。使用 6 株利福平抗性大肠杆菌 O157:H7 复合菌来接种(6logCFU/mL、g 或 cm²)胰蛋白酶大豆肉汤(TSB)、牛肉脂肪/瘦肉组织匀浆(FLH)、输送带流出液、碎牛肉或牛肉脂肪。将每种材料的小方片(4°C,30min)浸入接种的液体或碎牛肉中,或置于两块接种的牛肉脂肪之间并用压力(20kg)压合。病原体的附着/转移取决于表面材料和底物,尽管牛肉脂肪似乎消除了表面材料之间的差异。牛肉脂肪是最有效的(P<0.05)接种底物,其次是碎牛肉、FLH 和 TSB。将接种牛肉脂肪的小方片在牛肉脂肪匀浆(pH4.21)中孵育(15°C,16d),使病原体在小方片表面存活并生长,在储存的第 2 天至第 8 天观察到最大的生物膜形成,并且当液体-固体界面处存在空气时也是如此。结果表明,牛肉胴体的加工过程可能有利于大肠杆菌 O157:H7 附着在肉接触表面上并随后形成生物膜。此外,建议在设计研究以调查这些环境中大肠杆菌 O157:H7 生物膜的发展和控制时,使用在牛肉加工环境中发现的而不是实验室培养基作为研究的基础。
本研究的结果提供了关于牛肉胴体加工表面材料类型、加工地板液和残留物以及孵育条件对大肠杆菌 O157:H7 附着/转移和随后生物膜形成的影响的知识。研究结果强调了彻底清洁污染表面以去除所有牛肉脂肪或其他有机物质的重要性,这些物质可能在其他致命的抗菌干预过程中藏匿或保护微生物污染物。