Malakis A, Gulpinar G, Karaaslan Y, Papakonstantinou T, Aslan G
Department of Physics, Section of Solid State Physics, University of Athens, Athens, Greece.
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Mar;85(3 Pt 1):031146. doi: 10.1103/PhysRevE.85.031146. Epub 2012 Mar 29.
The Ising models S=1/2 and S=1 are studied by efficient Monte Carlo schemes on the (3,4,6,4) and the (3,3,3,3,6) Archimedean lattices. The algorithms used, a hybrid Metropolis-Wolff algorithm and a parallel tempering protocol, are briefly described and compared with the simple Metropolis algorithm. Accurate Monte Carlo data are produced at the exact critical temperatures of the Ising model for these lattices. Their finite-size analysis provide, with high accuracy, all critical exponents which, as expected, are the same with the well-known 2D Ising model exact values. A detailed finite-size scaling analysis of our Monte Carlo data for the S=1 model on the same lattices provides very clear evidence that this model obeys, also very well, the 2D Ising model critical exponents. As a result, we find that recent Monte Carlo simulations and attempts to define effective dimensionality for the S=1 model on these lattices are misleading. Accurate estimates are obtained for the critical amplitudes of the logarithmic expansions of the specific heat for both models on the two Archimedean lattices.
通过高效的蒙特卡罗方法,在(3,4,6,4)和(3,3,3,3,6)阿基米德晶格上研究了自旋S = 1/2和S = 1的伊辛模型。简要描述了所使用的算法——混合 metropolis - wolff算法和并行回火协议,并与简单的 metropolis算法进行了比较。在这些晶格的伊辛模型的精确临界温度下产生了精确的蒙特卡罗数据。它们的有限尺寸分析高精度地给出了所有临界指数,正如预期的那样,这些指数与著名的二维伊辛模型的精确值相同。对我们在相同晶格上S = 1模型的蒙特卡罗数据进行的详细有限尺寸标度分析提供了非常明确的证据,表明该模型也非常好地遵循二维伊辛模型的临界指数。结果,我们发现最近在这些晶格上对S = 1模型进行的蒙特卡罗模拟以及定义有效维度的尝试具有误导性。在两个阿基米德晶格上,对两个模型的比热对数展开的临界振幅都获得了精确估计。