Suppr超能文献

具有广义主方程的广义 metropolis 动力学:一种用于广义自旋系统的与时间无关和与时间有关的蒙特卡罗模拟方法。

Generalized Metropolis dynamics with a generalized master equation: an approach for time-independent and time-dependent Monte Carlo simulations of generalized spin systems.

作者信息

da Silva Roberto, Drugowich de Felício José Roberto, Martinez Alexandre Souto

机构信息

Instituto de Fisica, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, 9500 CEP 91501-970, Porto Alegre, Rio Grande do Sul, Brazil.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Jun;85(6 Pt 2):066707. doi: 10.1103/PhysRevE.85.066707. Epub 2012 Jun 14.

Abstract

The extension of Boltzmann-Gibbs thermostatistics, proposed by Tsallis, introduces an additional parameter q to the inverse temperature β. Here, we show that a previously introduced generalized Metropolis dynamics to evolve spin models is not local and does not obey the detailed energy balance. In this dynamics, locality is only retrieved for q=1, which corresponds to the standard Metropolis algorithm. Nonlocality implies very time-consuming computer calculations, since the energy of the whole system must be reevaluated when a single spin is flipped. To circumvent this costly calculation, we propose a generalized master equation, which gives rise to a local generalized Metropolis dynamics that obeys the detailed energy balance. To compare the different critical values obtained with other generalized dynamics, we perform Monte Carlo simulations in equilibrium for the Ising model. By using short-time nonequilibrium numerical simulations, we also calculate for this model the critical temperature and the static and dynamical critical exponents as functions of q. Even for q≠1, we show that suitable time-evolving power laws can be found for each initial condition. Our numerical experiments corroborate the literature results when we use nonlocal dynamics, showing that short-time parameter determination works also in this case. However, the dynamics governed by the new master equation leads to different results for critical temperatures and also the critical exponents affecting universality classes. We further propose a simple algorithm to optimize modeling the time evolution with a power law, considering in a log-log plot two successive refinements.

摘要

由Tsallis提出的玻尔兹曼 - 吉布斯统计力学的扩展,在逆温度β中引入了一个额外的参数q。在这里,我们表明,之前引入的用于演化自旋模型的广义梅特罗波利斯动力学不是局部的,并且不遵循详细的能量平衡。在这种动力学中,只有当q = 1时才恢复局部性,这对应于标准的梅特罗波利斯算法。非局部性意味着计算机计算非常耗时,因为当单个自旋翻转时,整个系统的能量必须重新评估。为了规避这种代价高昂的计算,我们提出了一个广义主方程,它产生了一种遵循详细能量平衡的局部广义梅特罗波利斯动力学。为了比较用其他广义动力学获得的不同临界值,我们对伊辛模型进行了平衡态蒙特卡罗模拟。通过使用短时间非平衡数值模拟,我们还计算了该模型的临界温度以及作为q的函数的静态和动态临界指数。即使对于q≠1,我们表明对于每个初始条件都可以找到合适的时间演化幂律。当我们使用非局部动力学时,我们的数值实验证实了文献结果,表明短时间参数确定在这种情况下也有效。然而,由新主方程控制的动力学导致临界温度以及影响普适类的临界指数的不同结果。我们进一步提出了一种简单的算法,用于在对数 - 对数图中考虑两个连续细化来优化幂律时间演化建模。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验