Suppr超能文献

酵母水甘油通道蛋白利用跨膜核心来限制甘油的运输。

Yeast aquaglyceroporins use the transmembrane core to restrict glycerol transport.

机构信息

Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, S-40530 Gothenburg, Sweden.

出版信息

J Biol Chem. 2012 Jul 6;287(28):23562-70. doi: 10.1074/jbc.M112.353482. Epub 2012 May 16.

Abstract

Aquaglyceroporins are transmembrane proteins belonging to the family of aquaporins, which facilitate the passage of specific uncharged solutes across membranes of cells. The yeast aquaglyceroporin Fps1 is important for osmoadaptation by regulating intracellular glycerol levels during changes in external osmolarity. Upon high osmolarity conditions, yeast accumulates glycerol by increased production of the osmolyte and by restricting glycerol efflux through Fps1. The extended cytosolic termini of Fps1 contain short domains that are important for regulating glycerol flux through the channel. Here we show that the transmembrane core of the protein plays an equally important role. The evidence is based on results from an intragenic suppressor mutation screen and domain swapping between the regulated variant of Fps1 from Saccharomyces cerevisiae and the hyperactive Fps1 ortholog from Ashbya gossypii. This suggests a novel mechanism for regulation of glycerol flux in yeast, where the termini alone are not sufficient to restrict Fps1 transport. We propose that glycerol flux through the channel is regulated by interplay between the transmembrane helices and the termini. This mechanism enables yeast cells to fine-tune intracellular glycerol levels at a wide range of extracellular osmolarities.

摘要

水通道蛋白是属于水通道蛋白家族的跨膜蛋白,它促进特定的不带电荷的溶质穿过细胞的膜。酵母水通道蛋白 Fps1 对于通过调节细胞内甘油水平来适应渗透压变化很重要。在高渗透压条件下,酵母通过增加渗透物的产生和通过限制 Fps1 来限制甘油外流来积累甘油。Fps1 的扩展细胞溶质末端包含短结构域,这些结构域对于调节通过通道的甘油通量很重要。在这里,我们表明蛋白质的跨膜核心同样起着重要的作用。这一证据基于基因内抑制突变筛选和调控变体之间的结构域交换的结果酵母中的 Fps1 和 Ashbya gossypii 的过度活跃的 Fps1 同源物。这表明了酵母中甘油通量调节的一种新机制,其中末端本身不足以限制 Fps1 运输。我们提出甘油通过通道的通量受到跨膜螺旋和末端之间的相互作用的调节。这种机制使酵母细胞能够在广泛的细胞外渗透压范围内精细调节细胞内甘油水平。

相似文献

1
Yeast aquaglyceroporins use the transmembrane core to restrict glycerol transport.
J Biol Chem. 2012 Jul 6;287(28):23562-70. doi: 10.1074/jbc.M112.353482. Epub 2012 May 16.
2
Identification of residues controlling transport through the yeast aquaglyceroporin Fps1 using a genetic screen.
Eur J Biochem. 2004 Feb;271(4):771-9. doi: 10.1111/j.1432-1033.2004.03980.x.
3
Yeast Fps1 glycerol facilitator functions as a homotetramer.
Yeast. 2011 Dec;28(12):815-9. doi: 10.1002/yea.1908. Epub 2011 Oct 26.
4
Deletion of FPS1, encoding aquaglyceroporin Fps1p, improves xylose fermentation by engineered Saccharomyces cerevisiae.
Appl Environ Microbiol. 2013 May;79(10):3193-201. doi: 10.1128/AEM.00490-13. Epub 2013 Mar 8.
5
Rgc2 Regulator of Glycerol Channel Fps1 Functions as a Homo- and Heterodimer with Rgc1.
Eukaryot Cell. 2015 Jul;14(7):719-25. doi: 10.1128/EC.00073-15. Epub 2015 May 29.
7
Fps1p controls the accumulation and release of the compatible solute glycerol in yeast osmoregulation.
Mol Microbiol. 1999 Feb;31(4):1087-104. doi: 10.1046/j.1365-2958.1999.01248.x.
8
Activation of CWI pathway through high hydrostatic pressure, enhancing glycerol efflux via the aquaglyceroporin Fps1 in .
Mol Biol Cell. 2023 Aug 1;34(9):ar92. doi: 10.1091/mbc.E23-03-0086. Epub 2023 Jun 28.
9
The yeast aquaglyceroporin Fps1p is a bidirectional arsenite channel.
FEBS Lett. 2010 Feb 19;584(4):726-32. doi: 10.1016/j.febslet.2009.12.027. Epub 2009 Dec 22.
10
A regulatory domain in the C-terminal extension of the yeast glycerol channel Fps1p.
J Biol Chem. 2004 Apr 9;279(15):14954-60. doi: 10.1074/jbc.M313126200. Epub 2004 Jan 28.

引用本文的文献

1
Identification of Aquaporins Involved in Hydrogen Peroxide Signaling.
J Fungi (Basel). 2023 Apr 21;9(4):499. doi: 10.3390/jof9040499.
2
Metabolite secretion in microorganisms: the theory of metabolic overflow put to the test.
Metabolomics. 2018 Mar 2;14(4):43. doi: 10.1007/s11306-018-1339-7.
4
Central Metabolic Responses to Ozone and Herbivory Affect Photosynthesis and Stomatal Closure.
Plant Physiol. 2016 Nov;172(3):2057-2078. doi: 10.1104/pp.16.01318. Epub 2016 Oct 6.
5
Are Aquaporins the Missing Transmembrane Osmosensors?
J Membr Biol. 2015 Aug;248(4):753-65. doi: 10.1007/s00232-015-9790-0. Epub 2015 Mar 20.
6
An integrated view on a eukaryotic osmoregulation system.
Curr Genet. 2015 Aug;61(3):373-82. doi: 10.1007/s00294-015-0475-0. Epub 2015 Feb 8.
7
Expression Analysis of Sugarcane Aquaporin Genes under Water Deficit.
J Nucleic Acids. 2013;2013:763945. doi: 10.1155/2013/763945. Epub 2013 Dec 29.

本文引用的文献

1
Functional characterization of a novel aquaporin from Dictyostelium discoideum amoebae implies a unique gating mechanism.
J Biol Chem. 2012 Mar 2;287(10):7487-94. doi: 10.1074/jbc.M111.329102. Epub 2012 Jan 18.
2
Riboflavin production by Ashbya gossypii.
Biotechnol Lett. 2012 Apr;34(4):611-8. doi: 10.1007/s10529-011-0833-z. Epub 2011 Dec 21.
3
Characterization of α-factor pheromone and pheromone receptor genes of Ashbya gossypii.
FEMS Yeast Res. 2011 Aug;11(5):418-29. doi: 10.1111/j.1567-1364.2011.00732.x. Epub 2011 May 6.
4
The Ashbya gossypii fimbrin SAC6 is required for fast polarized hyphal tip growth and endocytosis.
Microbiol Res. 2011 Mar 20;166(3):137-45. doi: 10.1016/j.micres.2010.09.003. Epub 2011 Jan 14.
5
Structural insights into eukaryotic aquaporin regulation.
FEBS Lett. 2010 Jun 18;584(12):2580-8. doi: 10.1016/j.febslet.2010.04.037. Epub 2010 Apr 21.
6
Crystal structure of a yeast aquaporin at 1.15 angstrom reveals a novel gating mechanism.
PLoS Biol. 2009 Jun;7(6):e1000130. doi: 10.1371/journal.pbio.1000130. Epub 2009 Jun 16.
7
PCR-based gene targeting in Candida albicans.
Nat Protoc. 2008;3(9):1414-21. doi: 10.1038/nprot.2008.137.
8
Mechanism of selectivity in aquaporins and aquaglyceroporins.
Proc Natl Acad Sci U S A. 2008 Jan 29;105(4):1198-203. doi: 10.1073/pnas.0707662104. Epub 2008 Jan 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验