Suppr超能文献

疾病中的气道成像:噱头还是有用的工具?

Airway imaging in disease: gimmick or useful tool?

机构信息

University of British Columbia James Hogg Research Centre and Institute for Heart + Lung Health, Vancouver, British Columbia, Canada.

出版信息

J Appl Physiol (1985). 2012 Aug 15;113(4):636-46. doi: 10.1152/japplphysiol.00372.2012. Epub 2012 May 17.

Abstract

Airway remodeling is an important pathophysiological mechanism in a variety of chronic airway diseases. Historically investigators have had to use invasive techniques such as histological examination of excised tissue to study airway wall structure. The last several years has seen a proliferation of relatively noninvasive techniques to assess the airway branching pattern, wall thickness, and more recently, airway wall tissue components. These methods include computed tomography, magnetic resonance imaging, and optical coherence tomography. These new imaging technologies have become popular because to understand the physiology of lung disease it is important we understand the underlying anatomy. However, these new approaches are not standardized or available in all centers so a review of their validity and clinical utility is appropriate. This review documents how investigators are working hard to correct for inconsistencies between techniques so that they become more accepted and utilized in clinical settings. These new imaging techniques are very likely to play a frontline role in the study of lung disease and will, hopefully, allow clinicians and investigators to better understand disease pathogenesis and to design and assess new therapeutic interventions.

摘要

气道重塑是多种慢性气道疾病的重要病理生理机制。历史上,研究人员不得不使用组织学检查等有创技术来研究气道壁结构。在过去的几年中,出现了许多相对无创的技术来评估气道分支模式、壁厚度,以及最近评估气道壁组织成分。这些方法包括计算机断层扫描、磁共振成像和光相干断层扫描。这些新的成像技术之所以受到欢迎,是因为要了解肺部疾病的生理学,了解其潜在的解剖结构非常重要。然而,这些新方法在所有中心都没有标准化或可用,因此对其有效性和临床实用性进行审查是合适的。这篇综述记录了研究人员如何努力纠正技术之间的不一致,以使它们在临床环境中更被接受和使用。这些新的成像技术很可能在肺部疾病的研究中发挥重要作用,并有望使临床医生和研究人员能够更好地了解疾病发病机制,并设计和评估新的治疗干预措施。

相似文献

1
Airway imaging in disease: gimmick or useful tool?
J Appl Physiol (1985). 2012 Aug 15;113(4):636-46. doi: 10.1152/japplphysiol.00372.2012. Epub 2012 May 17.
2
What can computed tomography and magnetic resonance imaging tell us about ventilation?
J Appl Physiol (1985). 2012 Aug 15;113(4):647-57. doi: 10.1152/japplphysiol.00353.2012. Epub 2012 May 31.
3
Advances in Optical Coherence Tomography and Confocal Laser Endomicroscopy in Pulmonary Diseases.
Respiration. 2020;99(3):190-205. doi: 10.1159/000503261. Epub 2019 Oct 8.
4
Quantitative pulmonary imaging using computed tomography and magnetic resonance imaging.
Respirology. 2012 Apr;17(3):432-44. doi: 10.1111/j.1440-1843.2011.02117.x.
5
Standards for quantitative assessment of lung structure.
J Appl Physiol (1985). 2010 Sep;109(3):934. doi: 10.1152/japplphysiol.00228.2010. Epub 2010 Apr 15.
6
Quantitative assessment of the airway wall using computed tomography and optical coherence tomography.
Proc Am Thorac Soc. 2009 Aug 15;6(5):439-43. doi: 10.1513/pats.200904-015AW.
7
Recent advances in optical coherence tomography for the diagnoses of lung disorders.
Expert Rev Respir Med. 2011 Oct;5(5):711-24. doi: 10.1586/ers.11.59.
8
Preclinical anatomical, molecular, and functional imaging of the lung with multiple modalities.
Am J Physiol Lung Cell Mol Physiol. 2014 May 15;306(10):L897-914. doi: 10.1152/ajplung.00007.2014. Epub 2014 Mar 21.
9
Tomographic imaging of small airways.
Respiration. 2012;84(4):265-74. doi: 10.1159/000342645. Epub 2012 Sep 27.
10
Computed tomography scans in severe asthma: utility and clinical implications.
Curr Opin Pulm Med. 2012 Jan;18(1):42-7. doi: 10.1097/MCP.0b013e32834db255.

引用本文的文献

1
Is the Lung Built for Exercise? Advances and Unresolved Questions.
Med Sci Sports Exerc. 2023 Dec 1;55(12):2143-2159. doi: 10.1249/MSS.0000000000003255. Epub 2023 Jul 14.
3
A 3D-CNN model with CT-based parametric response mapping for classifying COPD subjects.
Sci Rep. 2021 Jan 8;11(1):34. doi: 10.1038/s41598-020-79336-5.
5
Micro-Computed Tomography Comparison of Preterminal Bronchioles in Centrilobular and Panlobular Emphysema.
Am J Respir Crit Care Med. 2017 Mar 1;195(5):630-638. doi: 10.1164/rccm.201602-0278OC.
6
Diagnosis, assessment, and phenotyping of COPD: beyond FEV₁.
Int J Chron Obstruct Pulmon Dis. 2016 Feb 19;11 Spec Iss(Spec Iss):3-12. doi: 10.2147/COPD.S85976. eCollection 2016.
7
CT-Definable Subtypes of Chronic Obstructive Pulmonary Disease: A Statement of the Fleischner Society.
Radiology. 2015 Oct;277(1):192-205. doi: 10.1148/radiol.2015141579. Epub 2015 May 11.
8
Sources of variation in quantitative computed tomography of the lung.
J Thorac Imaging. 2013 Sep;28(5):272-9. doi: 10.1097/RTI.0b013e31829efbe9.
9
Seeing may be believing.
J Appl Physiol (1985). 2012 Jul;113(2):315-6. doi: 10.1152/japplphysiol.00527.2012. Epub 2012 May 3.

本文引用的文献

2
Quantitative pulmonary imaging using computed tomography and magnetic resonance imaging.
Respirology. 2012 Apr;17(3):432-44. doi: 10.1111/j.1440-1843.2011.02117.x.
3
Frontiers in bronchoscopic imaging.
Respirology. 2012 Feb;17(2):261-9. doi: 10.1111/j.1440-1843.2011.02108.x.
4
Small-airway obstruction and emphysema in chronic obstructive pulmonary disease.
N Engl J Med. 2011 Oct 27;365(17):1567-75. doi: 10.1056/NEJMoa1106955.
6
Chronic obstructive pulmonary disease: quantification of bronchodilator effects by using hyperpolarized ³He MR imaging.
Radiology. 2011 Oct;261(1):283-92. doi: 10.1148/radiol.11110403. Epub 2011 Aug 3.
7
Chronic obstructive pulmonary disease exacerbations in the COPDGene study: associated radiologic phenotypes.
Radiology. 2011 Oct;261(1):274-82. doi: 10.1148/radiol.11110173. Epub 2011 Jul 25.
9
Phenotyping airway disease with optical coherence tomography.
Respirology. 2011 Jan;16(1):34-43. doi: 10.1111/j.1440-1843.2010.01888.x.
10
A randomized study of endobronchial valves for advanced emphysema.
N Engl J Med. 2010 Sep 23;363(13):1233-44. doi: 10.1056/NEJMoa0900928.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验