Suppr超能文献

深入了解 5-HT 信号对丘脑皮质轴突系统发育的复杂影响。

Insights into the complex influence of 5-HT signaling on thalamocortical axonal system development.

机构信息

INSERM, UMR-S-839, Institut du Fer à Moulin, Paris, F-75005, France.

出版信息

Eur J Neurosci. 2012 May;35(10):1563-72. doi: 10.1111/j.1460-9568.2012.8096.x.

Abstract

The topographic organization of the thalamocortical axons (TCAs) in the barrel field (BF) in the rodent primary somatosensory cortex results from a succession of temporally and spatially precise developmental events. Prenatally, growth and guidance mechanisms enable TCAs to navigate through the forebrain and reach the cortex. Postnatally, TCAs grow into the cortex, and the refinement of their terminal arborization pattern in layer IV creates barrel-like structures. The combined results of studies performed over the past 20 years clearly show that serotonin (5-hydroxytryptamine; 5-HT) signaling modulates these pre- and early postnatal developmental processes. In this context, 5-HT signaling can purposely be described as 'modulating' rather than 'controlling' because developmental alterations of 5-HT synthesis, uptake or degradation either have a dramatic, moderate or no effect at all on TCA pathway and BF formation. In this review we summarize and compare the outcomes of diverse pharmacological and genetic manipulations of 5-HT signaling on TCA pathway and BF formation, in an attempt to understand these discrepancies.

摘要

丘脑皮质轴突(TCAs)在啮齿动物初级体感皮层的桶状野(BF)中的拓扑组织是由一系列时间和空间精确的发育事件产生的。在产前,生长和引导机制使 TCAs 能够穿过前脑并到达皮层。出生后,TCAs 生长到皮层中,其 IV 层中终末树突分支模式的细化形成了桶状结构。过去 20 年进行的研究的综合结果清楚地表明,5-羟色胺(5-羟色胺;5-HT)信号调节这些产前和早期出生后的发育过程。在这种情况下,可以将 5-HT 信号描述为“调节”而不是“控制”,因为 5-HT 合成、摄取或降解的发育改变对 TCA 途径和 BF 形成要么具有显著、中度或根本没有影响。在这篇综述中,我们总结和比较了 5-HT 信号的各种药理学和遗传学操作对 TCA 途径和 BF 形成的影响,试图理解这些差异。

相似文献

1
Insights into the complex influence of 5-HT signaling on thalamocortical axonal system development.
Eur J Neurosci. 2012 May;35(10):1563-72. doi: 10.1111/j.1460-9568.2012.8096.x.
4
Effects of elevated serotonin levels on patterns of GAP-43 expression during barrel development in rat somatosensory cortex.
Brain Res Dev Brain Res. 2002 Dec 15;139(2):167-74. doi: 10.1016/s0165-3806(02)00545-x.
5
Selective facilitation of the serotonin(1B) receptor causes disorganization of thalamic afferents and barrels in somatosensory cortex of rat.
J Comp Neurol. 2000 Sep 11;425(1):130-8. doi: 10.1002/1096-9861(20000911)425:1<130::aid-cne11>3.0.co;2-b.
6
Sensory map transfer to the neocortex relies on pretarget ordering of thalamic axons.
Curr Biol. 2013 May 6;23(9):810-6. doi: 10.1016/j.cub.2013.03.062. Epub 2013 Apr 25.
8
Serotonin modulates the response of embryonic thalamocortical axons to netrin-1.
Nat Neurosci. 2007 May;10(5):588-97. doi: 10.1038/nn1896. Epub 2007 Apr 22.

引用本文的文献

3
Not Just a Mood Disorder─Is Depression a Neurodevelopmental, Cognitive Disorder? Focus on Prefronto-Thalamic Circuits.
ACS Chem Neurosci. 2024 Apr 17;15(8):1611-1618. doi: 10.1021/acschemneuro.3c00828. Epub 2024 Apr 5.
5
Serotonin, birth, and thalamocortical wiring.
Proc Natl Acad Sci U S A. 2023 Sep 12;120(37):e2312515120. doi: 10.1073/pnas.2312515120. Epub 2023 Aug 31.
6
Plasticity of thalamocortical axons is regulated by serotonin levels modulated by preterm birth.
Proc Natl Acad Sci U S A. 2023 Aug 15;120(33):e2301644120. doi: 10.1073/pnas.2301644120. Epub 2023 Aug 7.
7
Serotonin functions as a bidirectional guidance molecule regulating growth cone motility.
Cell Mol Life Sci. 2021 Mar;78(5):2247-2262. doi: 10.1007/s00018-020-03628-2. Epub 2020 Sep 16.
8
Hypoxia and connectivity in the developing vertebrate nervous system.
Dis Model Mech. 2018 Dec 12;11(12):dmm037127. doi: 10.1242/dmm.037127.
9
Perturbed Developmental Serotonin Signaling Affects Prefrontal Catecholaminergic Innervation and Cortical Integrity.
Mol Neurobiol. 2019 Feb;56(2):1405-1420. doi: 10.1007/s12035-018-1105-x. Epub 2018 Jun 9.

本文引用的文献

1
What can we get from 'barrels': the rodent barrel cortex as a model for studying the establishment of neural circuits.
Eur J Neurosci. 2011 Nov;34(10):1663-76. doi: 10.1111/j.1460-9568.2011.07892.x.
2
Fetal, maternal, and placental sources of serotonin and new implications for developmental programming of the brain.
Neuroscience. 2011 Dec 1;197:1-7. doi: 10.1016/j.neuroscience.2011.10.005. Epub 2011 Oct 8.
4
A transient placental source of serotonin for the fetal forebrain.
Nature. 2011 Apr 21;472(7343):347-50. doi: 10.1038/nature09972.
5
A genetically defined morphologically and functionally unique subset of 5-HT neurons in the mouse raphe nuclei.
J Neurosci. 2011 Feb 23;31(8):2756-68. doi: 10.1523/JNEUROSCI.4080-10.2011.
6
Genetic models of serotonin (5-HT) depletion: what do they tell us about the developmental role of 5-HT?
Anat Rec (Hoboken). 2011 Oct;294(10):1615-23. doi: 10.1002/ar.21248. Epub 2010 Sep 3.
7
Pet-1 is required across different stages of life to regulate serotonergic function.
Nat Neurosci. 2010 Oct;13(10):1190-8. doi: 10.1038/nn.2623. Epub 2010 Sep 5.
8
Cellular expression of the monocarboxylate transporter (MCT) family in the placenta of mice.
Placenta. 2010 Feb;31(2):126-33. doi: 10.1016/j.placenta.2009.11.013. Epub 2009 Dec 21.
9
Intracellular serotonin modulates insulin secretion from pancreatic beta-cells by protein serotonylation.
PLoS Biol. 2009 Oct;7(10):e1000229. doi: 10.1371/journal.pbio.1000229. Epub 2009 Oct 27.
10
Growth retardation and altered autonomic control in mice lacking brain serotonin.
Proc Natl Acad Sci U S A. 2009 Jun 23;106(25):10332-7. doi: 10.1073/pnas.0810793106. Epub 2009 Jun 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验