Suppr超能文献

基于轮廓的短线性蛋白质基序发现。

Profile-based short linear protein motif discovery.

机构信息

Complex and Adaptive Systems Laboratory, University College Dublin, Ireland.

出版信息

BMC Bioinformatics. 2012 May 18;13:104. doi: 10.1186/1471-2105-13-104.

Abstract

BACKGROUND

Short linear protein motifs are attracting increasing attention as functionally independent sites, typically 3-10 amino acids in length that are enriched in disordered regions of proteins. Multiple methods have recently been proposed to discover over-represented motifs within a set of proteins based on simple regular expressions. Here, we extend these approaches to profile-based methods, which provide a richer motif representation.

RESULTS

The profile motif discovery method MEME performed relatively poorly for motifs in disordered regions of proteins. However, when we applied evolutionary weighting to account for redundancy amongst homologous proteins, and masked out poorly conserved regions of disordered proteins, the performance of MEME is equivalent to that of regular expression methods. However, the two approaches returned different subsets within both a benchmark dataset, and a more realistic discovery dataset.

CONCLUSIONS

Profile-based motif discovery methods complement regular expression based methods. Whilst profile-based methods are computationally more intensive, they are likely to discover motifs currently overlooked by regular expression methods.

摘要

背景

短线性蛋白基序作为功能独立的位点越来越受到关注,通常长度为 3-10 个氨基酸,富含蛋白质的无序区域。最近提出了多种方法来基于简单正则表达式在一组蛋白质中发现过度表达的基序。在这里,我们将这些方法扩展到基于轮廓的方法,这些方法提供了更丰富的基序表示。

结果

MEME 轮廓基序发现方法在蛋白质无序区域的基序方面表现相对较差。然而,当我们应用进化加权来解释同源蛋白质之间的冗余,并掩盖无序蛋白质中保守性差的区域时,MEME 的性能与正则表达式方法相当。然而,这两种方法在基准数据集和更现实的发现数据集中都返回了不同的子集。

结论

基于轮廓的基序发现方法补充了基于正则表达式的方法。虽然基于轮廓的方法计算上更密集,但它们很可能会发现当前被正则表达式方法忽略的基序。

相似文献

1
Profile-based short linear protein motif discovery.基于轮廓的短线性蛋白质基序发现。
BMC Bioinformatics. 2012 May 18;13:104. doi: 10.1186/1471-2105-13-104.
4
Prediction of short linear protein binding regions.预测短线性蛋白结合区域。
J Mol Biol. 2012 Jan 6;415(1):193-204. doi: 10.1016/j.jmb.2011.10.025. Epub 2011 Oct 21.

引用本文的文献

本文引用的文献

1
ELM--the database of eukaryotic linear motifs.ELM——真核线性基序数据库。
Nucleic Acids Res. 2012 Jan;40(Database issue):D242-51. doi: 10.1093/nar/gkr1064. Epub 2011 Nov 21.
4
Attributes of short linear motifs.短线性基序的属性。
Mol Biosyst. 2012 Jan;8(1):268-81. doi: 10.1039/c1mb05231d. Epub 2011 Sep 12.
5
SLiMSearch 2.0: biological context for short linear motifs in proteins.SLiMSearch 2.0:蛋白质中短线性基序的生物学背景。
Nucleic Acids Res. 2011 Jul;39(Web Server issue):W56-60. doi: 10.1093/nar/gkr402. Epub 2011 May 26.
6
HMMER web server: interactive sequence similarity searching.HMMER 网页服务器:交互式序列相似性搜索。
Nucleic Acids Res. 2011 Jul;39(Web Server issue):W29-37. doi: 10.1093/nar/gkr367. Epub 2011 May 18.
7
Phospho.ELM: a database of phosphorylation sites--update 2011.磷酸化位点数据库Phospho.ELM:2011年更新版
Nucleic Acids Res. 2011 Jan;39(Database issue):D261-7. doi: 10.1093/nar/gkq1104. Epub 2010 Nov 9.
9
ELM: the status of the 2010 eukaryotic linear motif resource.ELM:2010 年真核线性基序资源的现状。
Nucleic Acids Res. 2010 Jan;38(Database issue):D167-80. doi: 10.1093/nar/gkp1016. Epub 2009 Nov 17.
10
A structure filter for the Eukaryotic Linear Motif Resource.真核线性基序资源的结构过滤器。
BMC Bioinformatics. 2009 Oct 24;10:351. doi: 10.1186/1471-2105-10-351.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验