Rajski S R, Barton J K
a The Division of Chemistry and Chemical Engineering , California Institute of Technology , Pasadena , CA , 91125.
J Biomol Struct Dyn. 2000;17 Suppl 1:285-91. doi: 10.1080/07391102.2000.10506633.
Abstract The ability of the π-stacked array of heterocyclic DNA bases to behave as an efficient conduit for charge migration has been explored using a wide array of experimental approaches. Spectroscopic studies and biochemical assays show that charge transfer through well-stacked DNA can be extremely facile, although sensitive to structural distortions within the DNA base stack. The efficiency of these long-range reactions depends upon the coupling of the electron donor, acceptor and intervening base pairs within the base stack. As a result, base mismatches and stacking disruptions associated with protein binding to the helix can significantly perturb long range charge transfer. DNA-protein interactions which result in the base flipping of a nucleotide out of the DNA π-stack, in particular, dramatically inhibit long-range charge transfer through DNA. Whether these reactions that can occur over large molecular distances, be applied in sensing DNA damage, and be modulated by DNA-binding proteins, are exploited within the cell remains to be determined.
摘要 已使用多种实验方法探索了杂环DNA碱基的π堆积阵列作为电荷迁移有效通道的能力。光谱学研究和生化分析表明,通过良好堆积的DNA进行电荷转移可能极为容易,尽管对DNA碱基堆积内的结构畸变敏感。这些长程反应的效率取决于碱基堆积内电子供体、受体和中间碱基对的耦合。因此,与蛋白质结合到螺旋上相关的碱基错配和堆积破坏会显著扰乱长程电荷转移。特别是导致核苷酸从DNA π堆积中翻转出来的DNA-蛋白质相互作用,会极大地抑制通过DNA的长程电荷转移。这些能够在大分子距离上发生的反应是否可用于检测DNA损伤以及是否受DNA结合蛋白调控,在细胞内是否被利用仍有待确定。