Department of Mechanical Engineering, Stanford University, Stanford, California 94305, USA.
J Phys Chem A. 2012 Jun 14;116(23):5549-59. doi: 10.1021/jp303853h. Epub 2012 May 31.
The overall rate constants for the reactions of hydroxyl radicals (OH) with a series of ketones, namely, acetone (CH(3)COCH(3)), 2-butanone (C(2)H(5)COCH(3)), 3-pentanone (C(2)H(5)COC(2)H(5)), and 2-pentanone (C(3)H(7)COCH(3)), were studied behind reflected shock waves over the temperature range of 870-1360 K at pressures of 1-2 atm. OH radicals were produced by rapid thermal decomposition of the OH precursor tert-butyl hydroperoxide (TBHP) and were monitored by the narrow line width ring dye laser absorption of the well-characterized R(1)(5) line in the OH A-X (0, 0) band near 306.69 nm. The overall rate constants were inferred by comparing the measured OH time histories with the simulated profiles from the detailed mechanisms of Pichon et al. (2009) and Serinyel et al. (2010). These measured values can be expressed in Arrhenius form as k(CH3COCH3+OH) = 3.30 × 10(13) exp(-2437/T) cm(3) mol(-1) s(-1), k(C2H5COCH3+OH )= 6.35 × 10(13) exp(-2270/T) cm(3) mol(-1) s(-1), k(C2H5COC2H5+OH) = 9.29 × 10(13) exp(-2361/T) cm(3) mol(-1) s(-1), and k(C3H7COCH3+OH) = 7.06 × 10(13) exp(-2020/T) cm(3) mol(-1) s(-1). The measured rate constant for the acetone + OH reaction from the current study is consistent with three previous experimental studies from Bott and Cohen (1991), Vasudevan et al. (2005), and Srinivasan et al. (2007), within ±20%. Here, we also present the first direct high-temperature rate constant measurements of 2-butanone + OH, 3-pentanone + OH, and 2-pentanone + OH reactions. The measured values for the 2-butanone + OH reaction are in close accord with the theoretical calculation from Zhou et al. (2011), and the measured values for the 3-pentanone + OH reaction are in excellent agreement with the estimates (by analogy with the H-atom abstraction rate constants from alkanes) from Serinyel et al. Finally, the structure-activity relationship from Kwok and Atkinson (1995) was used to estimate these four rate constants, and the estimated values from this group-additivity model show good agreement with the measurements (within ~25%) at the present experimental conditions.
在 1-2 大气压下,温度范围为 870-1360 K 的条件下,通过快速热分解 OH 前体叔丁基过氧化氢(TBHP)产生羟基自由基(OH),并通过窄线宽环形染料激光吸收在 306.69nm 附近的 OH A-X(0,0)带中特征良好的 R(1)(5)线来监测 OH 自由基。通过将测量的 OH 时间历史与 Pichon 等人(2009 年)和 Serinyel 等人(2010 年)的详细机制模拟的轮廓进行比较,可以推断出总体速率常数。这些测量值可以用阿仑尼乌斯公式表示为 k(CH3COCH3 + OH)= 3.30×10(13)exp(-2437/T)cm(3)mol(-1)s(-1),k(C2H5COCH3 + OH)= 6.35×10(13)exp(-2270/T)cm(3)mol(-1)s(-1),k(C2H5COC2H5 + OH)= 9.29×10(13)exp(-2361/T)cm(3)mol(-1)s(-1),k(C3H7COCH3 + OH)= 7.06×10(13)exp(-2020/T)cm(3)mol(-1)s(-1)。目前研究中丙酮 + OH 反应的测量速率常数与 Bott 和 Cohen(1991)、Vasudevan 等人(2005 年)和 Srinivasan 等人(2007 年)的三项先前实验研究一致,误差在±20%以内。在这里,我们还首次直接测量了高温下 2-丁酮 + OH、3-戊酮 + OH 和 2-戊酮 + OH 反应的速率常数。2-丁酮 + OH 反应的测量值与 Zhou 等人(2011)的理论计算非常吻合,3-戊酮 + OH 反应的测量值与 Serinyel 等人的估计值(通过与烷烃中 H 原子抽取速率常数类推)非常吻合。最后,Kwok 和 Atkinson(1995)的结构活性关系用于估计这四个速率常数,该组加性模型的估计值与在本实验条件下的测量值(在~25%以内)吻合良好。