Suppr超能文献

微束放射疗法改变了血管结构和肿瘤氧合作用,并通过半乳糖凝集素-1 靶向的抗血管生成肽得到增强。

Microbeam radiation therapy alters vascular architecture and tumor oxygenation and is enhanced by a galectin-1 targeted anti-angiogenic peptide.

机构信息

Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA.

出版信息

Radiat Res. 2012 Jun;177(6):804-12. doi: 10.1667/rr2784.1. Epub 2012 May 18.

Abstract

In this study, we sought to determine the therapeutic potential of variably sized (50 μm or 500 μm wide, 14 mm tall) parallel microbeam radiation therapy (MRT) alone and in combination with a novel anti-angiogenic peptide, anginex, in mouse mammary carcinomas (4T1)--a moderately hypoxic and radioresistant tumor with propensity to metastasize. The fraction of total tumor volume that was directly irradiated was approximately 25% in each case, but the distance between segments irradiated by the planar microbeams (width of valley dose region) varied by an order of magnitude from 150-1500 μm corresponding to 200 μm and 2000 μm center-to-center inter-microbeam distances, respectively. We found that MRT administered in 50 μm beams at 150 Gy was most effective in delaying tumor growth. Furthermore, tumor growth delay induced by 50 μm beams at 150 Gy was virtually indistinguishable from the 500 μm beams at 150 Gy. Fifty-micrometer beams at the lower peak dose of 75 Gy induced growth delay intermediate between 150 Gy and untreated tumors, while 500 μm beams at 75 Gy were unable to alter tumor growth compared to untreated tumors. However, the addition of anginex treatment increased the relative tumor growth delay after 500 μm beams at 75 Gy most substantially out of the conditions tested. Anginex treatment of animals whose tumors received the 50 μm beams at 150 Gy also led to an improvement in growth delay from that induced by the comparable MRT alone. Immunohistochemical staining for CD31 (endothelial cells) and αSMA (smooth muscle pericyte-associated blood vessels as a measure of vessel normalization) indicated that vessel density was significantly decreased in all irradiated groups and pericyte staining was significantly increased in the irradiated groups on day 14 after irradiation. The addition of anginex treatment further decreased the mean vascular density in all combination treatment groups and further increased the amount of pericyte staining in these tumors. Finally, evidence of tumor hypoxia was found to decrease in tumors analyzed at 1-14 days after MRT in the groups receiving 150 Gy peak dose, but not 75 Gy peak dose. Our results suggest that tumor vascular damage induced by MRT at these potentially clinically acceptable peak entrance doses may provoke vascular normalization and may be exploited to improve tumor control using agents targeting angiogenesis.

摘要

在这项研究中,我们旨在确定不同大小(50μm 或 500μm 宽,14mm 高)平行微束放射治疗(MRT)单独以及与新型抗血管生成肽安格宁联合治疗的治疗潜力,在具有转移倾向的中度低氧和放射抵抗的小鼠乳腺癌(4T1)中。在每种情况下,直接照射的肿瘤总体积的分数约为 25%,但是平面微束照射的段之间的距离相差一个数量级,从 150-1500μm 不等,分别对应于 200μm 和 2000μm 的中心到中心微束之间的距离。我们发现,在 150Gy 时以 50μm 束进行的 MRT 最有效地延迟肿瘤生长。此外,在 150Gy 时,50μm 束诱导的肿瘤生长延迟与 500μm 束在 150Gy 时几乎无法区分。在较低的峰值剂量 75Gy 时,50μm 束诱导的生长延迟介于 150Gy 与未治疗肿瘤之间,而 500μm 束在 75Gy 时与未治疗肿瘤相比无法改变肿瘤生长。然而,在测试的条件中,安格宁的添加使在 75Gy 时的 500μm 束的相对肿瘤生长延迟增加最多。在接受 150Gy 的 50μm 束的动物中接受安格宁治疗也导致与单独使用可比 MRT 相比,生长延迟得到改善。CD31(内皮细胞)和αSMA(平滑肌周细胞相关血管作为血管正常化的测量)的免疫组织化学染色表明,在所有照射组中,血管密度显著降低,并且在照射后第 14 天,在照射组中周细胞染色显著增加。在所有联合治疗组中,安格宁的添加进一步降低了平均血管密度,并进一步增加了这些肿瘤中的周细胞染色量。最后,在接受 150Gy 峰值剂量的组中,在接受 MRT 后 1-14 天分析的肿瘤中发现肿瘤缺氧的证据减少,但在接受 75Gy 峰值剂量的组中没有。我们的结果表明,在这些潜在临床可接受的峰值入口剂量下,MRT 诱导的肿瘤血管损伤可能引发血管正常化,并可利用针对血管生成的药物来改善肿瘤控制。

相似文献

3
Antiangiogenesis therapy using a novel angiogenesis inhibitor, anginex, following radiation causes tumor growth delay.
Int J Clin Oncol. 2007 Feb;12(1):42-7. doi: 10.1007/s10147-006-0625-y. Epub 2007 Feb 25.
4
Effects of pulsed, spatially fractionated, microscopic synchrotron X-ray beams on normal and tumoral brain tissue.
Mutat Res. 2010 Apr-Jun;704(1-3):160-6. doi: 10.1016/j.mrrev.2009.12.003. Epub 2009 Dec 23.
5
Synchrotron microbeam radiation therapy for rat brain tumor palliation-influence of the microbeam width at constant valley dose.
Phys Med Biol. 2009 Nov 7;54(21):6711-24. doi: 10.1088/0031-9155/54/21/017. Epub 2009 Oct 20.
9
Brain tumor vessel response to synchrotron microbeam radiation therapy: a short-term in vivo study.
Phys Med Biol. 2008 Jul 7;53(13):3609-22. doi: 10.1088/0031-9155/53/13/015. Epub 2008 Jun 17.

引用本文的文献

4
Overview and Recommendations for Prospective Multi-institutional Spatially Fractionated Radiation Therapy Clinical Trials.
Int J Radiat Oncol Biol Phys. 2024 Jul 1;119(3):737-749. doi: 10.1016/j.ijrobp.2023.12.013. Epub 2023 Dec 17.
5
Inhibition of galectins in cancer: Biological challenges for their clinical application.
Front Immunol. 2023 Jan 10;13:1104625. doi: 10.3389/fimmu.2022.1104625. eCollection 2022.
6
7
Radiobiological and Treatment-Related Aspects of Spatially Fractionated Radiotherapy.
Int J Mol Sci. 2022 Mar 20;23(6):3366. doi: 10.3390/ijms23063366.
9
Minibeam radiation therapy enhanced tumor delivery of PEGylated liposomal doxorubicin in a triple-negative breast cancer mouse model.
Ther Adv Med Oncol. 2021 Oct 29;13:17588359211053700. doi: 10.1177/17588359211053700. eCollection 2021.

本文引用的文献

3
Microbeam radiation-induced tissue damage depends on the stage of vascular maturation.
Int J Radiat Oncol Biol Phys. 2011 Aug 1;80(5):1522-32. doi: 10.1016/j.ijrobp.2011.03.018.
4
A narrow microbeam is more effective for tumor growth suppression than a wide microbeam: an in vivo study using implanted human glioma cells.
J Synchrotron Radiat. 2011 Jul;18(Pt 4):671-8. doi: 10.1107/S090904951101185X. Epub 2011 May 17.
5
Out-of-field cell survival following exposure to intensity-modulated radiation fields.
Int J Radiat Oncol Biol Phys. 2011 Apr 1;79(5):1516-22. doi: 10.1016/j.ijrobp.2010.11.034. Epub 2011 Jan 27.
6
Tumour thermotolerance, a physiological phenomenon involving vessel normalisation.
Int J Hyperthermia. 2011;27(1):42-52. doi: 10.3109/02656736.2010.510495. Epub 2011 Jan 4.
7
Preferential effect of synchrotron microbeam radiation therapy on intracerebral 9L gliosarcoma vascular networks.
Int J Radiat Oncol Biol Phys. 2010 Dec 1;78(5):1503-12. doi: 10.1016/j.ijrobp.2010.06.021.
9
Effects of pulsed, spatially fractionated, microscopic synchrotron X-ray beams on normal and tumoral brain tissue.
Mutat Res. 2010 Apr-Jun;704(1-3):160-6. doi: 10.1016/j.mrrev.2009.12.003. Epub 2009 Dec 23.
10
Synchrotron microbeam radiation therapy for rat brain tumor palliation-influence of the microbeam width at constant valley dose.
Phys Med Biol. 2009 Nov 7;54(21):6711-24. doi: 10.1088/0031-9155/54/21/017. Epub 2009 Oct 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验