Price Lauren S L, Rivera Judith N, Madden Andrew J, Herity Leah B, Piscitelli Joseph A, Mageau Savannah, Santos Charlene M, Roques Jose R, Midkiff Bentley, Feinberg Nana N, Darr David, Chang Sha X, Zamboni William C
Division of Pharmacotherapy & Experimental Therapeutics, UNC Eshelman School of Pharmacy, Chapel Hill, NC, USA.
Joint Department of Biomedical Engineering, The University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, USA.
Ther Adv Med Oncol. 2021 Oct 29;13:17588359211053700. doi: 10.1177/17588359211053700. eCollection 2021.
Minibeam radiation therapy is an experimental radiation therapy utilizing an array of parallel submillimeter planar X-ray beams. In preclinical studies, minibeam radiation therapy has been shown to eradicate tumors and cause significantly less damage to normal tissue compared to equivalent radiation doses delivered by conventional broadbeam radiation therapy, where radiation dose is uniformly distributed.
Expanding on prior studies that suggested minibeam radiation therapy increased perfusion in tumors, we compared a single fraction of minibeam radiation therapy (peak dose:valley dose of 28 Gy:2.1 Gy and 100 Gy:7.5 Gy) and broadbeam radiation therapy (7 Gy) in their ability to enhance tumor delivery of PEGylated liposomal doxorubicin and alter the tumor microenvironment in a murine tumor model. Plasma and tumor pharmacokinetic studies of PEGylated liposomal doxorubicin and tumor microenvironment profiling were performed in a genetically engineered mouse model of claudin-low triple-negative breast cancer (T11).
Minibeam radiation therapy (28 Gy) and broadbeam radiation therapy (7 Gy) increased PEGylated liposomal doxorubicin tumor delivery by 7.1-fold and 2.7-fold, respectively, compared to PEGylated liposomal doxorubicin alone, without altering the plasma disposition. The enhanced tumor delivery of PEGylated liposomal doxorubicin by minibeam radiation therapy is consistent after repeated dosing, is associated with changes in tumor macrophages but not collagen or angiogenesis, and nontoxic to local tissues. Our study indicated that the minibeam radiation therapy's ability to enhance the drug delivery decreases from 28 to 100 Gy peak dose.
Our studies suggest that low-dose minibeam radiation therapy is a safe and effective method to significantly enhance the tumor delivery of nanoparticle agents.
微束放射治疗是一种实验性放射治疗方法,它利用一系列平行的亚毫米平面X射线束。在临床前研究中,与传统宽束放射治疗(辐射剂量均匀分布)所给予的等效辐射剂量相比,微束放射治疗已显示出能够根除肿瘤且对正常组织造成的损伤明显更小。
在先前研究表明微束放射治疗可增加肿瘤灌注的基础上,我们比较了单次微束放射治疗(峰值剂量:谷值剂量为28 Gy:2.1 Gy和100 Gy:7.5 Gy)和宽束放射治疗(7 Gy)在增强聚乙二醇化脂质体阿霉素向小鼠肿瘤模型肿瘤递送以及改变肿瘤微环境方面的能力。在一种claudin低表达三阴性乳腺癌(T11)的基因工程小鼠模型中进行了聚乙二醇化脂质体阿霉素的血浆和肿瘤药代动力学研究以及肿瘤微环境分析。
与单独使用聚乙二醇化脂质体阿霉素相比,微束放射治疗(28 Gy)和宽束放射治疗(7 Gy)分别使聚乙二醇化脂质体阿霉素的肿瘤递送增加了7.1倍和2.7倍,且未改变其血浆分布。微束放射治疗对聚乙二醇化脂质体阿霉素肿瘤递送的增强作用在重复给药后是一致的,与肿瘤巨噬细胞的变化相关,但与胶原蛋白或血管生成无关,并且对局部组织无毒。我们的研究表明,微束放射治疗增强药物递送的能力随着峰值剂量从28 Gy降至100 Gy而降低。
我们的研究表明,低剂量微束放射治疗是一种安全有效的方法,可显著增强纳米颗粒药物向肿瘤的递送。