Goltsev Vasilij, Zaharieva Ivelina, Chernev Petko, Kouzmanova Margarita, Kalaji Hazem M, Yordanov Ivan, Krasteva Vassilena, Alexandrov Vladimir, Stefanov Detelin, Allakhverdiev Suleyman I, Strasser Reto J
Department of Biophysics and Radiobiology, St. Kliment Ohridski University of Sofia, Sofia, Bulgaria.
Biochim Biophys Acta. 2012 Aug;1817(8):1490-8. doi: 10.1016/j.bbabio.2012.04.018. Epub 2012 May 15.
Water deficit is one of the most important environmental factors limiting sustainable crop yields and it requires a reliable tool for fast and precise quantification. In this work we use simultaneously recorded signals of photoinduced prompt fluorescence (PF) and delayed fluorescence (DF) as well as modulated reflection (MR) of light at 820nm for analysis of the changes in the photosynthetic activity in detached bean leaves during drying. Depending on the severity of the water deficit we identify different changes in the primary photosynthetic processes. When the relative water content (RWC) is decreased to 60% there is a parallel decrease in the ratio between the rate of excitation trapping in the Photosystem (PS) II reaction center and the rate of reoxidation of reduced PSII acceptors. A further decrease of RWC to 20% suppresses the electron transfer from the reduced plastoquinone pool to the PSI reaction center. At RWC below values 15%, the reoxidation of the photoreduced primary quinone acceptor of PSII, Q(A)(-), is inhibited and at less than 5%, the primary photochemical reactions in PSI and II are inactivated. Using the collected sets of PF, DF and MR signals, we construct and train an artificial neural network, capable of recognizing the RWC in a series of "unknown" samples with a correlation between calculated and gravimetrically determined RWC values of about R(2)≈0.98. Our results demonstrate that this is a reliable method for determination of RWC in detached leaves and after further development it could be used for quantifying of drought stress of crop plants in situ. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: from Natural to Artificial.
水分亏缺是限制作物可持续产量的最重要环境因素之一,因此需要一种可靠的工具来进行快速精确的量化。在这项工作中,我们同时使用光诱导即时荧光(PF)和延迟荧光(DF)以及820nm光的调制反射(MR)记录信号,来分析离体菜豆叶片在干燥过程中光合活性的变化。根据水分亏缺的严重程度,我们确定了光合作用初级过程中的不同变化。当相对含水量(RWC)降至60%时,光系统(PS)II反应中心的激发捕获速率与还原的PSII受体的再氧化速率之比会同时下降。RWC进一步降至20%会抑制电子从还原的质体醌库向PSI反应中心的转移。当RWC低于15%时,PSII的光还原初级醌受体Q(A)(-)的再氧化受到抑制,而当低于5%时,PSI和II中的初级光化学反应失活。利用收集到的PF、DF和MR信号集,我们构建并训练了一个人工神经网络,该网络能够识别一系列“未知”样品中的RWC,计算得到的RWC值与重量法测定的RWC值之间的相关性约为R(2)≈0.98。我们的结果表明,这是一种测定离体叶片RWC的可靠方法,经过进一步改进后可用于原位量化作物的干旱胁迫。本文是名为:光合作用促进可持续发展:从自然到人工的特刊的一部分。