Suppr超能文献

DprB促进幽门螺杆菌的基因组间和基因组内重组。

DprB facilitates inter- and intragenomic recombination in Helicobacter pylori.

作者信息

Zhang Xue-Song, Blaser Martin J

机构信息

Department of Medicine, New York University School of Medicine, New York, New York, USA.

出版信息

J Bacteriol. 2012 Aug;194(15):3891-903. doi: 10.1128/JB.00346-12. Epub 2012 May 18.

Abstract

For naturally competent microorganisms, such as Helicobacter pylori, the steps that permit recombination of exogenous DNA are not fully understood. Immediately downstream of an H. pylori gene (dprA) that facilitates high-frequency natural transformation is HP0334 (dprB), annotated to be a putative Holliday junction resolvase (HJR). We showed that the HP0334 (dprB) gene product facilitates high-frequency natural transformation. We determined the physiologic roles of DprB by genetic analyses. DprB controls in vitro growth, survival after exposure to UV or fluoroquinolones, and intragenomic recombination. dprB ruvC double deletion dramatically decreases both homologous and homeologous transformation and survival after exposure to DNA-damaging agents. Moreover, the DprB protein binds to synthetic Holliday junction structures rather than double-stranded or single-stranded DNA. These results demonstrate that the dprB product plays important roles affecting inter- and intragenomic recombination. We provide evidence that the two putative H. pylori HJRs (DprB and RuvC) have overlapping but distinct functions involving intergenomic (primarily DprB) and intragenomic (primarily RuvC) recombination.

摘要

对于自然感受态微生物,如幽门螺杆菌,允许外源DNA重组的步骤尚未完全了解。在促进高频自然转化的幽门螺杆菌基因(dprA)的紧邻下游是HP0334(dprB),注释为假定的霍利迪连接体解离酶(HJR)。我们发现HP0334(dprB)基因产物促进高频自然转化。我们通过遗传分析确定了DprB的生理作用。DprB控制体外生长、暴露于紫外线或氟喹诺酮后的存活以及基因组内重组。dprB ruvC双缺失显著降低同源和异源转化以及暴露于DNA损伤剂后的存活率。此外,DprB蛋白与合成的霍利迪连接体结构结合,而不是与双链或单链DNA结合。这些结果表明dprB产物在影响基因组间和基因组内重组方面发挥重要作用。我们提供的证据表明,两种假定的幽门螺杆菌HJR(DprB和RuvC)具有重叠但不同的功能,涉及基因组间(主要是DprB)和基因组内(主要是RuvC)重组。

相似文献

1
DprB facilitates inter- and intragenomic recombination in Helicobacter pylori.
J Bacteriol. 2012 Aug;194(15):3891-903. doi: 10.1128/JB.00346-12. Epub 2012 May 18.
4
The RecRO pathway of DNA recombinational repair in Helicobacter pylori and its role in bacterial survival in the host.
DNA Repair (Amst). 2011 Apr 3;10(4):373-9. doi: 10.1016/j.dnarep.2011.01.004. Epub 2011 Feb 2.
5
Natural transformation in Helicobacter pylori: DNA transport in an unexpected way.
Trends Microbiol. 2002 Apr;10(4):159-62; discussion 162. doi: 10.1016/s0966-842x(02)02314-4.
6
Antimutator role of the DNA glycosylase mutY gene in Helicobacter pylori.
J Bacteriol. 2006 Sep;188(17):6224-34. doi: 10.1128/JB.00477-06.
7
A RecB-like helicase in Helicobacter pylori is important for DNA repair and host colonization.
Infect Immun. 2009 Jan;77(1):286-91. doi: 10.1128/IAI.00970-08. Epub 2008 Nov 3.
8
HP0333, a member of the dprA family, is involved in natural transformation in Helicobacter pylori.
J Bacteriol. 1999 Sep;181(18):5572-80. doi: 10.1128/JB.181.18.5572-5580.1999.
9
Genetic dissection of Helicobacter pylori AddAB role in homologous recombination.
FEMS Microbiol Lett. 2010 Oct;311(1):44-50. doi: 10.1111/j.1574-6968.2010.02077.x. Epub 2010 Aug 16.
10
Dual nuclease and helicase activities of Helicobacter pylori AddAB are required for DNA repair, recombination, and mouse infectivity.
J Biol Chem. 2009 Jun 19;284(25):16759-16766. doi: 10.1074/jbc.M109.005587. Epub 2009 Apr 24.

引用本文的文献

1
Critical assessment of nanopore sequencing for the detection of multiple forms of DNA modifications.
bioRxiv. 2024 Nov 19:2024.11.19.624260. doi: 10.1101/2024.11.19.624260.
2
Biochemical and Structural Study of RuvC and YqgF from Deinococcus radiodurans.
mBio. 2022 Oct 26;13(5):e0183422. doi: 10.1128/mbio.01834-22. Epub 2022 Aug 24.
3
A specific A/T polymorphism in Western tyrosine phosphorylation B-motifs regulates Helicobacter pylori CagA epithelial cell interactions.
PLoS Pathog. 2015 Feb 3;11(2):e1004621. doi: 10.1371/journal.ppat.1004621. eCollection 2015 Feb.
5
The cell pole: the site of cross talk between the DNA uptake and genetic recombination machinery.
Crit Rev Biochem Mol Biol. 2012 Nov-Dec;47(6):531-55. doi: 10.3109/10409238.2012.729562. Epub 2012 Oct 9.

本文引用的文献

2
Helicobacter pylori chromosomal DNA replication: current status and future perspectives.
FEBS Lett. 2011 Jan 3;585(1):7-17. doi: 10.1016/j.febslet.2010.11.018. Epub 2010 Nov 20.
3
DNA damage triggers genetic exchange in Helicobacter pylori.
PLoS Pathog. 2010 Jul 29;6(7):e1001026. doi: 10.1371/journal.ppat.1001026.
5
The primary transcriptome of the major human pathogen Helicobacter pylori.
Nature. 2010 Mar 11;464(7286):250-5. doi: 10.1038/nature08756. Epub 2010 Feb 17.
6
Coadaptation of Helicobacter pylori and humans: ancient history, modern implications.
J Clin Invest. 2009 Sep;119(9):2475-87. doi: 10.1172/JCI38605.
7
Phagocytic superoxide specifically damages an extracytoplasmic target to inhibit or kill Salmonella.
PLoS One. 2009;4(3):e4975. doi: 10.1371/journal.pone.0004975. Epub 2009 Mar 23.
8
Natural transformation of helicobacter pylori involves the integration of short DNA fragments interrupted by gaps of variable size.
PLoS Pathog. 2009 Mar;5(3):e1000337. doi: 10.1371/journal.ppat.1000337. Epub 2009 Mar 13.
9
A RecB-like helicase in Helicobacter pylori is important for DNA repair and host colonization.
Infect Immun. 2009 Jan;77(1):286-91. doi: 10.1128/IAI.00970-08. Epub 2008 Nov 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验