Suppr超能文献

在癫痫性星状眼小鼠的皮层丘脑突触中,AMPA 受体选择性丧失。

Selective loss of AMPA receptors at corticothalamic synapses in the epileptic stargazer mouse.

机构信息

Department of Anatomy, Brain Health Research Centre, Otago School of Medical Sciences, University of Otago, Dunedin, New Zealand.

出版信息

Neuroscience. 2012 Aug 16;217:19-31. doi: 10.1016/j.neuroscience.2012.05.011. Epub 2012 May 17.

Abstract

Absence seizures are common in the stargazer mutant mouse. The mutation underlying the epileptic phenotype in stargazers is a defect in the gene encoding the normal expression of the protein stargazin. Stargazin is involved in the membrane trafficking and synaptic targeting of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) at excitatory glutamatergic synapses. Thus, the genetic defect in the stargazer results in a loss of AMPARs and consequently, excitation at glutamatergic synapses. Absence seizures are known to arise in thalamocortical networks. In the present study we show for the first time, using Western blot analysis and quantitative immunogold cytochemistry, that in the epileptic stargazer mouse, there is a global loss of AMPAR protein in nucleus reticularis (RTN) and a selective loss of AMPARs at corticothalamic synapses in inhibitory neurons of the RTN thalamus. In contrast, there is no significant loss of AMPARs at corticothalamic synapses in excitatory relay neurons in the thalamic ventral posterior (VP) region. The findings of this study thus provide cellular and molecular evidence for a selective regional loss of synaptic AMPAR within the RTN that could account for the loss of function at these inhibitory neuron synapses, which has previously been reported from electrophysiological studies. The specific loss of AMPARs at RTN but not relay synapses in the thalamus of the stargazer, could contribute to the absence epilepsy phenotype by altering thalamocortical network oscillations. This is supported by recent evidence that loss of glutamate receptor subunit 4 (GluA4) (the predominant AMPAR-subtype in the thalamus), also leads to a specific reduction in strength in the cortico-RTN pathway and enhanced thalamocortical oscillations, in the Gria4(-/-) model of absence epilepsy. Thus further study of thalamic changes in these models could be important for future development of drugs targeted to absence epilepsy.

摘要

失神发作在星状突变异鼠中很常见。星状突变异鼠的癫痫表型的突变是编码正常表达蛋白星状蛋白的基因突变。星状蛋白参与兴奋性谷氨酸能突触中 α-氨基-3-羟基-5-甲基-4-异恶唑丙酸受体 (AMPAR) 的膜运输和突触靶向。因此,星状突变异鼠的遗传缺陷导致 AMPAR 的丧失,进而导致谷氨酸能突触的兴奋。已知失神发作起源于丘脑皮质网络。在本研究中,我们首次使用 Western blot 分析和定量免疫金细胞化学显示,在癫痫星状突变异鼠中,网状核 (RTN) 中的 AMPAR 蛋白整体丢失,并且 RTN 丘脑的抑制性神经元中皮质丘脑突触的 AMPAR 选择性丢失。相比之下,在丘脑腹后 (VP) 区的兴奋性中继神经元中,皮质丘脑突触处的 AMPAR 没有明显丢失。因此,这项研究的结果为 RTN 中突触 AMPAR 的选择性区域性丧失提供了细胞和分子证据,这可能解释了以前从电生理研究中报道的这些抑制性神经元突触的功能丧失。星状突变异鼠的 RTN 而不是丘脑中继神经元中 AMPAR 的特异性丧失,可能通过改变丘脑皮质网络振荡,导致失神癫痫表型。最近的证据支持了这一观点,即谷氨酸受体亚单位 4 (GluA4) (丘脑的主要 AMPAR 亚型) 的丧失也导致皮质-RTN 通路的强度特异性降低,并增强了丘脑皮质振荡,在失神癫痫的 Gria4(-/-) 模型中。因此,对这些模型中丘脑变化的进一步研究对于开发针对失神癫痫的靶向药物可能很重要。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验