Department of Physical Therapy and Rehabilitation Sciences, University of Kansas Medical Center, Kansas City, KS 66160, USA.
Exp Physiol. 2013 Jan;98(1):207-19. doi: 10.1113/expphysiol.2012.066688. Epub 2012 May 21.
To assess the effects of exercise on liver and brain bioenergetic infrastructures, we exposed C57BL/6 mice to 6 weeks of moderate-intensity treadmill exercise. During the training period, fasting blood glucose was lower in exercised mice than in sedentary mice, but serum insulin levels were not reduced. At week 6, trained mice showed a paradoxical decrease in plasma lactate during exercise, which was accompanied by an increase in the liver monocarboxylate transporter 2 protein level (∼30%, P < 0.05). Exercise increased liver peroxisomal proliferator-activated receptor-γ coactivator 1α expression (approximately twofold, P < 0.001), NAD-dependent deacetylase sirtuin-1 protein (∼30%, P < 0.05), p38 protein (∼15%, P < 0.05), cytochrome c oxidase subunit 4 isoform 1 protein (∼50%, P < 0.05) and AMP-activated protein kinase phosphorylation (∼40%, P < 0.05). Despite this, liver mitochondrial DNA copy number (∼30%, P = 0.05), mitochondrial transcription factor A expression (∼15%, P < 0.05), cytochrome c oxidase subunit 2 expression (∼10%, P < 0.05), cAMP-response element binding protein phosphorylation (∼60%, P < 0.05) and brain-derived neurotrophic factor expression (∼40%, P < 0.05) were all reduced, while cytochrome oxidase and citrate synthase activities were unchanged. The only altered brain parameter observed was a reduction in tumour necrosis factor α expression (∼35%, P < 0.05); tumour necrosis factor α expression was unchanged in liver. Our data suggest that lactate produced by exercising muscle modifies the liver bioenergetic infrastructure, and enhanced liver uptake may in turn limit the ability of exercise-generated lactate to modify brain bioenergetics. Also, it appears that, at least in the liver, a dissociated mitochondrial biogenesis, in which some components are strategically enhanced while others are minimized, can occur.
为了评估运动对肝脏和大脑生物能量结构的影响,我们让 C57BL/6 小鼠进行 6 周的中等强度跑步机运动。在训练期间,运动小鼠的空腹血糖低于静坐小鼠,但血清胰岛素水平没有降低。在第 6 周时,训练小鼠在运动期间出现了血浆乳酸的反常下降,这伴随着肝单羧酸转运蛋白 2 蛋白水平的增加(约 30%,P<0.05)。运动增加了肝脏过氧化物酶体增殖物激活受体-γ 共激活因子 1α 的表达(约两倍,P<0.001)、NAD 依赖性去乙酰化酶 Sirtuin-1 蛋白(约 30%,P<0.05)、p38 蛋白(约 15%,P<0.05)、细胞色素 c 氧化酶亚基 4 同工型 1 蛋白(约 50%,P<0.05)和 AMP 激活的蛋白激酶磷酸化(约 40%,P<0.05)。尽管如此,肝脏线粒体 DNA 拷贝数(约 30%,P=0.05)、线粒体转录因子 A 表达(约 15%,P<0.05)、细胞色素 c 氧化酶亚基 2 表达(约 10%,P<0.05)、cAMP 反应元件结合蛋白磷酸化(约 60%,P<0.05)和脑源性神经营养因子表达(约 40%,P<0.05)均降低,而细胞色素氧化酶和柠檬酸合酶活性不变。唯一观察到的改变的大脑参数是肿瘤坏死因子-α 表达的降低(约 35%,P<0.05);肝脏中肿瘤坏死因子-α 表达不变。我们的数据表明,运动肌肉产生的乳酸改变了肝脏的生物能量结构,而增强的肝脏摄取可能反过来限制了运动产生的乳酸改变大脑生物能量的能力。此外,至少在肝脏中,可能会发生一种分离的线粒体生物发生,其中一些成分被战略性地增强,而其他成分被最小化。