Polymer Therapeutics Lab., Centro de Investigación Príncipe Felipe, Eduardo Primo Yúfera-3, 46012 Valencia, Spain.
J Control Release. 2012 Oct 10;163(1):63-74. doi: 10.1016/j.jconrel.2012.05.024. Epub 2012 May 18.
In order to explore the influence of polymer microstructure and stereochemistry in biological settings, the synthesis, micellization, cellular fate and the use in paclitaxel formulations of poly(N-(2-hydroxypropyl)-methacrylamide)-block-poly(L-lactide) (P(HPMA)-block-P(LLA)) and poly(N-(2-hydroxypropyl)-methacrylamide)-block-poly(DL-lactide) block copolymers (P(HPMA)-block-P(DLLA)) were studied. To this end, P(HPMA)-block-P(lactide) block copolymers and their fluorescently labeled analogues were synthesized. The polymers exhibited molecular weights M(n) around 20,000 g/mol with dispersities (D=M(w)/M(n)) below 1.3. In addition, the solution conformation of this new type of partially degradable amphiphilic block copolymers was studied with and without paclitaxel loading in PBS buffer (pH 7.2), employing fluorescence correlation spectroscopy (FCS). We observed polymeric micelles with a hydrodynamic diameter of 17.0 nm for a fluorescently labeled P(HPMA)-block-P(LLA) block copolymer (P2*) and 20.4 nm for a P(HPMA)-block-P(DLLA) block copolymer (P3*). For the corresponding loaded block copolymers aggregates with a diameter of 40.0 nm (P2*) and 41.4 nm (P3*) in formulations containing 17 wt.% paclitaxel were observed, respectively. While the block copolymer itself showed non-toxic behavior up to a concentration of 3 mg/mL in HeLa (human cervix adenocarcinoma) cells, the paclitaxel containing formulations showed IC 50 values in the range of 10-100 nM. The P(HPMA)-block-P(DLLA) polymer (P3*) enters the cells more efficiently than stereo regular polymer (P2*) via an energy-dependent uptake mechanism. Thus, differences in the IC(50) value are--most likely--attributed to significant changes in cellular uptake. Polymer tacticity and stereoregularity appear to represent a key feature determining cellular uptake and efficiency for the PLA block copolymer drug formulations. This work demonstrates the importance of the microstructure of polymers used in drug delivery systems (DDS).
为了探索聚合物微观结构和立体化学在生物环境中的影响,研究了聚(N-(2-羟丙基)-甲基丙烯酰胺)-嵌段-聚(L-丙交酯)(P(HPMA)-嵌段-P(LLA))和聚(N-(2-羟丙基)-甲基丙烯酰胺)-嵌段-聚(DL-丙交酯)嵌段共聚物(P(HPMA)-嵌段-P(DL))的合成、胶束化、细胞命运以及在紫杉醇制剂中的应用。为此,合成了 P(HPMA)-嵌段-P(丙交酯)嵌段共聚物及其荧光标记类似物。聚合物的重均分子量 M(n)约为 20000g/mol,分散度(D=M(w)/M(n))低于 1.3。此外,在 PBS 缓冲液(pH 7.2)中,研究了具有和不具有紫杉醇负载的这种新型部分可降解两亲性嵌段共聚物的溶液构象,采用荧光相关光谱(FCS)。我们观察到,对于荧光标记的 P(HPMA)-嵌段-P(LLA)嵌段共聚物(P2*),聚合物胶束的流体力学直径为 17.0nm,对于 P(HPMA)-嵌段-P(DL)嵌段共聚物(P3*),聚合物胶束的流体力学直径为 20.4nm。对于相应的负载嵌段共聚物,在含有 17wt%紫杉醇的制剂中观察到直径为 40.0nm(P2*)和 41.4nm(P3*)的聚集物。虽然嵌段共聚物本身在 HeLa(人宫颈腺癌细胞)细胞中达到 3mg/ml 的浓度时表现出无毒行为,但含有紫杉醇的制剂的 IC50 值在 10-100nm 的范围内。与立体规整聚合物(P2*)相比,P(HPMA)-嵌段-P(DL)聚合物(P3*)通过能量依赖的摄取机制更有效地进入细胞。因此,IC50 值的差异--很可能--归因于细胞摄取的显著变化。聚合物的立构规整性和立体规整性似乎是决定 PLA 嵌段共聚物药物制剂细胞摄取和效率的关键特征。这项工作证明了在药物传递系统(DDS)中使用的聚合物的微观结构的重要性。