Brando Vittorio E, Dekker Arnold G, Park Young Je, Schroeder Thomas
CSIRO Land & Water, Environmental Earth Observation Program, Canberra, Australian Capital Territory, Australia.
Appl Opt. 2012 May 20;51(15):2808-33. doi: 10.1364/AO.51.002808.
To address the challenges of the parameterization of ocean color inversion algorithms in optically complex waters, we present an adaptive implementation of the linear matrix inversion method (LMI) [J. Geophys. Res.101, 16631 (1996)], which iterates over a limited number of model parameter sets to account for naturally occurring spatial or temporal variability in inherent optical properties (IOPs) and concentration specific IOPs (SIOPs). LMI was applied to a simulated reflectance dataset for spectral bands representing measured water properties of a macrotidal embayment characterized by a large variability in the shape and amplitude factors controlling the IOP spectra. We compare the inversion results for the single-model parameter implementation to the adaptive parameterization of LMI for the retrieval of bulk IOPs, the IOPs apportioned to the optically active constituents, and the concentrations of the optically active constituents. We found that ocean color inversion with LMI is significantly sensitive to the a priori selection of the empirical parameters g0 and g1 of the equations relating the above-surface remote-sensing reflectance to the IOPs in the water column [J. Geophys. Res.93, 10909 (1988)]. When assuming the values proposed for open-ocean applications for g0 and g1 [J. Geophys. Res.93, 10909 (1988)], the accuracy of the retrieved IOPs, and concentrations was substantially lower than that retrieved with the parameterization developed for coastal waters [Appl. Opt.38, 3831 (1999)] because the optically complex waters analyzed in this study were dominated by particulate and dissolved matter. The adaptive parameterization of LMI yielded consistently more accurate inversion results than the single fixed SIOP model parameterizations of LMI. The adaptive implementation of LMI led to an improvement in the accuracy of apportioned IOPs and concentrations, particularly for the phytoplankton-related quantities. The adaptive parameterization encompassing wider IOP ranges were more accurate for the retrieval of bulk IOPs, apportioned IOPs, and concentration of optically active constituents.
为应对光学复杂水体中海洋颜色反演算法参数化的挑战,我们提出了线性矩阵反演方法(LMI)[《地球物理研究杂志》101, 16631 (1996)]的一种自适应实现方式,该方法在有限数量的模型参数集上进行迭代,以考虑固有光学特性(IOPs)和浓度特定光学特性(SIOPs)中自然发生的空间或时间变异性。LMI被应用于一个模拟反射率数据集,该数据集针对代表一个半日潮海湾实测水体特性的光谱波段,该海湾的特征在于控制IOP光谱的形状和幅度因子存在很大变异性。我们将单模型参数实现的反演结果与LMI的自适应参数化进行比较,以反演总体IOPs、分配给光学活性成分的IOPs以及光学活性成分的浓度。我们发现,使用LMI进行海洋颜色反演对将水面遥感反射率与水柱中的IOPs相关联的方程的经验参数g0和g1的先验选择非常敏感[《地球物理研究杂志》93, 10909 (1988)]。当假设用于开阔海洋应用的g0和g1值[《地球物理研究杂志》93, 10909 (1988)]时,反演得到的IOPs和浓度的准确性明显低于使用为沿海水域开发的参数化方法所反演的结果[《应用光学》38, 3831 (1999)],因为本研究中分析的光学复杂水体主要由颗粒物质和溶解物质主导。LMI的自适应参数化始终产生比LMI的单一固定SIOP模型参数化更准确的反演结果。LMI的自适应实现提高了分配的IOPs和浓度的准确性,特别是对于与浮游植物相关的量。涵盖更宽IOP范围的自适应参数化对于反演总体IOPs、分配的IOPs和光学活性成分的浓度更为准确。