Suppr超能文献

带罚项的循环和几乎循环学习的 BPNN 的计算属性和收敛性分析。

Computational properties and convergence analysis of BPNN for cyclic and almost cyclic learning with penalty.

机构信息

School of Mathematical Sciences, Dalian University of Technology, Dalian 116024, PR China.

出版信息

Neural Netw. 2012 Sep;33:127-35. doi: 10.1016/j.neunet.2012.04.013. Epub 2012 May 9.

Abstract

Weight decay method as one of classical complexity regularization methods is simple and appears to work well in some applications for backpropagation neural networks (BPNN). This paper shows results for the weak and strong convergence for cyclic and almost cyclic learning BPNN with penalty term (CBP-P and ACBP-P). The convergence is guaranteed under certain relaxed conditions for activation functions, learning rate and under the assumption for the stationary set of error function. Furthermore, the boundedness of the weights in the training procedure is obtained in a simple and clear way. Numerical simulations are implemented to support our theoretical results and demonstrate that ACBP-P has better performance than CBP-P on both convergence speed and generalization ability.

摘要

权值衰减方法是经典的复杂度正则化方法之一,在反向传播神经网络 (BPNN) 的一些应用中似乎效果很好。本文针对具有惩罚项的循环和几乎循环学习 BPNN (CBP-P 和 ACBP-P) 的弱和强收敛性给出了结果。在激活函数、学习率的某些放宽条件下,并在误差函数的稳定集假设下,保证了收敛性。此外,以简单明了的方式获得了训练过程中权重的有界性。数值模拟验证了我们的理论结果,并表明 ACBP-P 在收敛速度和泛化能力方面均优于 CBP-P。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验