Department of Geosciences, Princeton University, Guyot Hall, Washington Road, Princeton, New Jersey 08544, USA.
Nature. 2012 May 23;485(7399):490-3. doi: 10.1038/nature11024.
The Earth has cooled over the past 4.5 billion years (Gyr) as a result of surface heat loss and declining radiogenic heat production. Igneous geochemistry has been used to understand how changing heat flux influenced Archaean geodynamics, but records of systematic geochemical evolution are complicated by heterogeneity of the rock record and uncertainties regarding selection and preservation bias. Here we apply statistical sampling techniques to a geochemical database of about 70,000 samples from the continental igneous rock record to produce a comprehensive record of secular geochemical evolution throughout Earth history. Consistent with secular mantle cooling, compatible and incompatible elements in basalts record gradually decreasing mantle melt fraction through time. Superimposed on this gradual evolution is a pervasive geochemical discontinuity occurring about 2.5 Gyr ago, involving substantial decreases in mantle melt fraction in basalts, and in indicators of deep crustal melting and fractionation, such as Na/K, Eu/Eu* (europium anomaly) and La/Yb ratios in felsic rocks. Along with an increase in preserved crustal thickness across the Archaean/Proterozoic boundary, these data are consistent with a model in which high-degree Archaean mantle melting produced a thick, mafic lower crust and consequent deep crustal delamination and melting--leading to abundant tonalite-trondhjemite-granodiorite magmatism and a thin preserved Archaean crust. The coincidence of the observed changes in geochemistry and crustal thickness with stepwise atmospheric oxidation at the end of the Archaean eon provides a significant temporal link between deep Earth geochemical processes and the rise of atmospheric oxygen on the Earth.
在过去的 45 亿年中,地球由于表面热损失和放射性元素产热减少而逐渐冷却。火成岩地球化学被用来了解不断变化的热通量如何影响太古代地球动力学,但由于岩石记录的不均匀性以及对选择和保存偏差的不确定性,系统的地球化学演化记录变得复杂。在这里,我们应用统计抽样技术对大陆火成岩记录中的约 70,000 个样本的地球化学数据库进行了分析,从而生成了整个地球历史上长期地球化学演化的综合记录。与地幔冷却一致的是,玄武岩中的相容元素和不相容元素随时间的推移记录了地幔熔体分数逐渐减少。在这种逐渐演化的基础上,大约 25 亿年前发生了一个普遍存在的地球化学不连续性,涉及到玄武岩中地幔熔体分数的大幅下降,以及深地壳熔融和分异的指标,如钠钾比、铕铕*(铕异常)和长/镱比在长英质岩石中。随着太古宙/元古宙边界的地壳厚度的增加,这些数据与一个模型一致,该模型认为,太古宙高地幔熔融产生了一个厚的镁铁质下地壳,随后导致深部地壳的剥离和熔融,从而产生了大量的英云闪长岩-奥长花岗岩-花岗闪长岩岩浆作用和一个薄的保存下来的太古宙地壳。所观察到的地球化学和地壳厚度变化与太古宙末期大气氧化的逐步增加的巧合,为地球深部地球化学过程与大气氧气上升之间提供了一个重要的时间联系。