Kim Kyung-Ho, Kim Hyung-Jun, Ahn Jae-Pyung, Han Jun-Hyun, Choi Jun Woo, Chang Joonyeon
Spin Device Research Center, Korea Institute of Science and Technology, Seoul 136-791, Korea.
J Nanosci Nanotechnol. 2012 Feb;12(2):1573-6. doi: 10.1166/jnn.2012.4673.
In-plane magnetic anisotropy and the corresponding morphology of Fe epitaxial layers have been investigated with respect to underlying MgO growth temperature when epitaxial Fe/MgO layers are grown on InAs (001) substrates. Coexistence of three-dimensional Fe islands with strong in-plane textures along <110> and (100) is observed on 4 nm thick MgO layers grown on 200 degrees C, leading to the absence of magnetic anisotropy. Meanwhile, the partially relaxed MgO layers grown above 300 degrees C give rise to two-dimensional Fe layers with cubic magnetic anisotropy. The higher MgO growth temperature accelerates the two-dimensional layer formation of the subsequent Fe as well as the advent of cubic anisotropy by reducing underlying strain within the MgO layer.
当在砷化铟(InAs)(001)衬底上生长外延铁/氧化镁(Fe/MgO)层时,针对底层氧化镁的生长温度,研究了铁外延层的面内磁各向异性及其相应的形貌。在200摄氏度下生长的4纳米厚氧化镁层上,观察到沿<110>和(100)方向具有强面内织构的三维铁岛共存,导致磁各向异性缺失。同时,在300摄氏度以上生长的部分弛豫氧化镁层产生具有立方磁各向异性的二维铁层。较高的氧化镁生长温度通过降低氧化镁层内的底层应变,加速了后续铁的二维层形成以及立方各向异性的出现。