Solid State Physics, Lund University, Lund, Sweden.
Nanotoxicology. 2013 Sep;7(6):1052-63. doi: 10.3109/17435390.2012.697589. Epub 2012 Jun 25.
For nanotoxicology investigations of air-borne particles to provide relevant results it is ever so important that the particle exposure of, for example cells, closely resembles the "real" exposure situation, that the dosimetry is well defined, and that the characteristics of the deposited nanoparticles are known in detail. By synthesizing the particles in the gas-phase and directly depositing them on lung cells the particle deposition conditions in the lung is closely mimicked. In this work we present a setup for generation of gas-borne nanoparticles of a variety of different materials with highly controlled and tunable particle characteristics, and demonstrate the method by generation of gold particles. Particle size, number concentration and mass of individual particles of the population are measured on-line by means of differential mobility analyzers (DMA) and an aerosol particle mass analyzer (APM), whereas primary particle size and internal structure are investigated by transmission electron microscopy. A method for estimating the surface area dose from the DMA-APM measurements is applied and we further demonstrate that for the setup used, a deposition time of around 1 h is needed for deposition onto cells in an air-liquid interface chamber, using electrostatic deposition, to reach a toxicological relevant surface area dose.
对于空气传播颗粒的纳米毒理学研究,要提供相关结果,至关重要的是,例如细胞的颗粒暴露要非常接近“真实”的暴露情况,剂量学要定义良好,并且沉积的纳米颗粒的特性要详细了解。通过在气相中合成颗粒并将其直接沉积在肺细胞上,可以很好地模拟肺部的颗粒沉积条件。在这项工作中,我们提出了一种用于产生各种不同材料的气相纳米颗粒的装置,该装置具有高度可控和可调的颗粒特性,并通过生成金颗粒来演示该方法。通过差分迁移率分析仪(DMA)和气溶胶颗粒质量分析仪(APM)在线测量颗粒的粒径、数浓度和个体颗粒的质量,而通过透射电子显微镜研究初级颗粒的大小和内部结构。应用了一种从 DMA-APM 测量中估计表面积剂量的方法,我们进一步证明,对于所使用的装置,使用静电沉积,在气液界面室中的细胞上沉积约 1 小时,以达到毒理学相关的表面积剂量。