Radiology and Imaging Sciences, Clinical Center, NIH, Bethesda, MD 20892, USA.
Int J Radiat Biol. 2012 Dec;88(12):941-7. doi: 10.3109/09553002.2012.697645. Epub 2012 Jun 25.
Iodine-125 decay induces localized DNA damage by three major mechanisms: (1) Direct damage by the emitted Auger electrons, (2) indirect damage by diffusible free radicals, and (3) charge neutralization of the residual, highly positively charged, tellurium daughter atom by stripping electrons from neighboring residues. The charge neutralization mechanism of (125)I-induced DNA damage is poorly understood. Charge transport along a DNA molecules can occur by either a hopping mechanism initiated by charge injection into DNA and propagated by charge migration through DNA bases along the DNA length, or by a tunneling mechanism in which charge transfers directly from a donor to an acceptor residue. In the first case additional damage in DNA nucleotides can be inflicted by the traveling charge; therefore, it is important to learn if charge hopping plays a role in (125)I-decay-induced DNA damage. In our previous work, we determined that at 193K the charge hopping mechanism was not an appreciable component of the mechanism of (125)I-induced DNA damage. However, the question whether this is also the case at higher temperatures remained open.
In the current study we used a well-known chemical barrier for charge hopping, 8-oxo-7, 8,-dihydroguanine (8-oxo-G), to assess the role of this mechanism in (125)I-decay-induced DNA damage at the following temperatures: 198, 253, 277 and 298 K.
We found that varying the temperature had little effect on the distribution of (125)I-induced DNA breaks, as well as on the breaks found at the 8-oxo-G probe both with and without piperidine treatment.
We thus conclude that charge transport by the hopping mechanism is not a major factor in (125)I-decay-induced DNA damage at biologically relevant temperatures.
碘-125 的衰变通过三种主要机制诱导局部 DNA 损伤:(1) 发射的俄歇电子的直接损伤,(2) 扩散自由基的间接损伤,以及 (3) 通过从相邻残基中剥离电子来中和残留的、带正电荷的碲子原子的电荷。(125)I 诱导 DNA 损伤的电荷中和机制理解甚少。DNA 分子中的电荷传输可以通过两种机制发生:一种是由电荷注入到 DNA 中引发的跳跃机制,并通过沿 DNA 长度通过 DNA 碱基的电荷迁移来传播;另一种是直接从供体转移到受体残基的隧道机制。在前一种情况下,移动电荷可能会对 DNA 核苷酸造成额外的损伤;因此,了解跳跃机制是否在(125)I 衰变诱导的 DNA 损伤中发挥作用非常重要。在我们之前的工作中,我们确定在 193K 时,跳跃机制不是(125)I 诱导 DNA 损伤机制的一个重要组成部分。然而,在更高温度下是否也是如此,这个问题仍然没有答案。
在当前的研究中,我们使用了一种众所周知的跳跃机制的化学障碍物 8-氧代-7,8-二氢鸟嘌呤 (8-oxo-G),以评估该机制在以下温度下(125)I 衰变诱导的 DNA 损伤中的作用:198、253、277 和 298K。
我们发现,改变温度对(125)I 诱导的 DNA 断裂的分布以及在有和没有哌啶处理的情况下在 8-oxo-G 探针处发现的断裂几乎没有影响。
因此,我们得出结论,跳跃机制的电荷传输不是在生物学相关温度下(125)I 衰变诱导的 DNA 损伤的主要因素。