Suppr超能文献

微囊藻(Microcystis aeruginosa)水华蓝藻与外源遗传因子之间复杂的相互作用,揭示了多样化的成簇规律间隔短回文重复序列(CRISPR)特征。

Intricate interactions between the bloom-forming cyanobacterium Microcystis aeruginosa and foreign genetic elements, revealed by diversified clustered regularly interspaced short palindromic repeat (CRISPR) signatures.

机构信息

Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake, Sakyo-ku, Kyoto, Japan.

出版信息

Appl Environ Microbiol. 2012 Aug;78(15):5353-60. doi: 10.1128/AEM.00626-12. Epub 2012 May 25.

Abstract

Clustered regularly interspaced short palindromic repeats (CRISPR) confer sequence-dependent, adaptive resistance in prokaryotes against viruses and plasmids via incorporation of short sequences, called spacers, derived from foreign genetic elements. CRISPR loci are thus considered to provide records of past infections. To describe the host-parasite (i.e., cyanophages and plasmids) interactions involving the bloom-forming freshwater cyanobacterium Microcystis aeruginosa, we investigated CRISPR in four M. aeruginosa strains and in two previously sequenced genomes. The number of spacers in each locus was larger than the average among prokaryotes. All spacers were strain specific, except for a string of 11 spacers shared in two closely related strains, suggesting diversification of the loci. Using CRISPR repeat-based PCR, 24 CRISPR genotypes were identified in a natural cyanobacterial community. Among 995 unique spacers obtained, only 10 sequences showed similarity to M. aeruginosa phage Ma-LMM01. Of these, six spacers showed only silent or conservative nucleotide mutations compared to Ma-LMM01 sequences, suggesting a strategy by the cyanophage to avert CRISPR immunity dependent on nucleotide identity. These results imply that host-phage interactions can be divided into M. aeruginosa-cyanophage combinations rather than pandemics of population-wide infectious cyanophages. Spacer similarity also showed frequent exposure of M. aeruginosa to small cryptic plasmids that were observed only in a few strains. Thus, the diversification of CRISPR implies that M. aeruginosa has been challenged by diverse communities (almost entirely uncharacterized) of cyanophages and plasmids.

摘要

规律成簇间隔短回文重复序列(CRISPR)通过整合来自外源遗传元件的短序列(称为间隔序列),为原核生物提供了针对病毒和质粒的序列依赖性、适应性抗性。因此,CRISPR 基因座被认为提供了过去感染的记录。为了描述涉及形成水华的淡水蓝藻铜绿微囊藻的宿主-寄生虫(即蓝藻噬菌体和质粒)相互作用,我们研究了四个铜绿微囊藻菌株和两个先前测序的基因组中的 CRISPR。每个基因座中的间隔序列数量大于原核生物的平均数量。除了两个密切相关的菌株共享的 11 个间隔序列串外,所有间隔序列都是菌株特异性的,这表明基因座的多样化。使用基于 CRISPR 重复的 PCR,在一个自然蓝藻群落中鉴定出 24 种 CRISPR 基因型。在获得的 995 个独特间隔序列中,只有 10 个序列与铜绿微囊藻噬菌体 Ma-LMM01 具有相似性。其中,六个间隔序列与 Ma-LMM01 序列相比只有沉默或保守的核苷酸突变,这表明蓝藻噬菌体采用了一种策略来规避依赖核苷酸同一性的 CRISPR 免疫。这些结果表明,宿主-噬菌体相互作用可以分为铜绿微囊藻-噬菌体组合,而不是广泛流行的感染性蓝藻噬菌体的流行。间隔序列的相似性也频繁暴露于铜绿微囊藻,而这些小的隐匿质粒仅在少数菌株中观察到。因此,CRISPR 的多样化意味着铜绿微囊藻受到了多种多样的蓝藻噬菌体和质粒的挑战(几乎完全没有特征)。

相似文献

2
Diversification of CRISPR within coexisting genotypes in a natural population of the bloom-forming cyanobacterium Microcystis aeruginosa.
Microbiology (Reading). 2014 May;160(Pt 5):903-16. doi: 10.1099/mic.0.073494-0. Epub 2014 Feb 28.
3
Cooccurrence of Broad- and Narrow-Host-Range Viruses Infecting the Bloom-Forming Toxic Cyanobacterium Microcystis aeruginosa.
Appl Environ Microbiol. 2019 Aug 29;85(18). doi: 10.1128/AEM.01170-19. Print 2019 Sep 15.
4
Development of a real-time PCR assay for the quantification of Ma-LMM01-type Microcystis cyanophages in a natural pond.
Lett Appl Microbiol. 2015 Apr;60(4):400-8. doi: 10.1111/lam.12387. Epub 2015 Feb 18.
5
Diverse CRISPRs evolving in human microbiomes.
PLoS Genet. 2012;8(6):e1002441. doi: 10.1371/journal.pgen.1002441. Epub 2012 Jun 13.
6
Ma-LMM01 infecting toxic Microcystis aeruginosa illuminates diverse cyanophage genome strategies.
J Bacteriol. 2008 Mar;190(5):1762-72. doi: 10.1128/JB.01534-07. Epub 2007 Dec 7.
8
10
Incomplete Selective Sweeps of Population Detected by the Leader-End CRISPR Fragment Analysis in a Natural Pond.
Front Microbiol. 2018 Mar 8;9:425. doi: 10.3389/fmicb.2018.00425. eCollection 2018.

引用本文的文献

4
Profiling the interplay and coevolution of and cyanosiphophage Mic1.
Microbiol Spectr. 2024 Jun 4;12(6):e0029824. doi: 10.1128/spectrum.00298-24. Epub 2024 May 2.
6
Ecological Dynamics of Broad- and Narrow-Host-Range Viruses Infecting the Bloom-Forming Toxic Cyanobacterium Microcystis aeruginosa.
Appl Environ Microbiol. 2023 Feb 28;89(2):e0211122. doi: 10.1128/aem.02111-22. Epub 2023 Jan 23.
7
Genomic comparison of Planktothrix agardhii isolates from a Lake Erie embayment.
PLoS One. 2022 Aug 23;17(8):e0273454. doi: 10.1371/journal.pone.0273454. eCollection 2022.
10
Association of CRISPR/Cas System with the Drug Resistance in .
Infect Drug Resist. 2020 Jun 23;13:1929-1935. doi: 10.2147/IDR.S253380. eCollection 2020.

本文引用的文献

1
Multiscale model of CRISPR-induced coevolutionary dynamics: diversification at the interface of Lamarck and Darwin.
Evolution. 2012 Jul;66(7):2015-29. doi: 10.1111/j.1558-5646.2012.01595.x. Epub 2012 Mar 19.
2
Analysis of two marine metagenomes reveals the diversity of plasmids in oceanic environments.
Environ Microbiol. 2012 Feb;14(2):453-66. doi: 10.1111/j.1462-2920.2011.02633.x. Epub 2011 Nov 8.
3
Defense islands in bacterial and archaeal genomes and prediction of novel defense systems.
J Bacteriol. 2011 Nov;193(21):6039-56. doi: 10.1128/JB.05535-11. Epub 2011 Sep 9.
4
Targeted bacterial immunity buffers phage diversity.
J Virol. 2011 Oct;85(20):10554-60. doi: 10.1128/JVI.05222-11. Epub 2011 Aug 3.
5
Interference by clustered regularly interspaced short palindromic repeat (CRISPR) RNA is governed by a seed sequence.
Proc Natl Acad Sci U S A. 2011 Jun 21;108(25):10098-103. doi: 10.1073/pnas.1104144108. Epub 2011 Jun 6.
8
Evolution and classification of the CRISPR-Cas systems.
Nat Rev Microbiol. 2011 Jun;9(6):467-77. doi: 10.1038/nrmicro2577. Epub 2011 May 9.
9
CRISPR distribution within the Escherichia coli species is not suggestive of immunity-associated diversifying selection.
J Bacteriol. 2011 May;193(10):2460-7. doi: 10.1128/JB.01307-10. Epub 2011 Mar 18.
10
In vivo activity of CRISPR-mediated virus defence in a hyperthermophilic archaeon.
Mol Microbiol. 2011 Apr;80(2):481-91. doi: 10.1111/j.1365-2958.2011.07586.x. Epub 2011 Mar 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验