Department of Pharmaceutical Sciences, Birla Institute of Technology, Mesra, Ranchi 835 215, Jharkhand, India.
J Comput Aided Mol Des. 2012 Jul;26(7):865-81. doi: 10.1007/s10822-012-9581-y. Epub 2012 May 26.
We employed a combination of molecular docking and dynamics to understand the interaction of three different radical scavengers (SB-HSC21, ABNM13 and trimidox) with ribonucleotide reductase M2 (hRRM2) domain. On the basis of the observed results, we can propose how these ligands interact with the enzyme, and cease the radical transfer step from the di-iron center to TYR176. All the ligands alter the electron density over TYR176, -OH group by forming an extremely stable H-bond with either -NHOH group, or with phenolic hydroxyl group of the ligands. This change in electronic density disrupts the water bridge between TYR176, -OH and the di-iron center, which stops the single electron transfer process from TYR176, -OH to iron. As a consequence the enzyme is inhibited. Another interesting observation that we are reporting is the two stage gate keeping mechanism of the RR active site tunnel. We describe these as the outer Gate-1 controlled by ARG330, and the inner Gate-2 controlled by SER263, PHE240, and PHE236. We also observed a dynamic conformational shift in these residues, the incoming ligands can go through, and interact with the underlying TYR176, -OH group. From the study we found the active-site of hRRM2 is extremely flexible and shows a significant induced fit.
我们采用分子对接和动力学相结合的方法,研究了三种不同的自由基清除剂(SB-HSC21、ABNM13 和 trimidox)与核糖核苷酸还原酶 M2(hRRM2)结构域的相互作用。根据观察到的结果,我们可以提出这些配体如何与酶相互作用,并阻止自由基从二铁中心转移到 TYR176。所有配体都通过与-NHOH 基团或配体的酚羟基形成极其稳定的氢键,改变 TYR176 和 -OH 上的电子密度。这种电子密度的变化破坏了 TYR176、-OH 和二铁中心之间的水桥,从而阻止了从 TYR176、-OH 到铁的单电子转移过程。因此,酶被抑制。我们报告的另一个有趣的观察结果是 RR 活性位点隧道的两阶段门控机制。我们将其描述为由 ARG330 控制的外门控-1 和由 SER263、PHE240 和 PHE236 控制的内门控-2。我们还观察到这些残基发生了动态构象变化,进入的配体可以通过并与底层 TYR176、-OH 基团相互作用。从研究中我们发现 hRRM2 的活性位点非常灵活,表现出显著的诱导契合。