Yun Danny, Saleh Lana, García-Serres Ricardo, Chicalese Brandon M, An Young H, Huynh Boi Hanh, Bollinger J Martin
Department of Biochemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.
Biochemistry. 2007 Nov 13;46(45):13067-73. doi: 10.1021/bi7003747. Epub 2007 Oct 17.
Activation of O2 by the diiron(II/II) cluster in protein R2 of class I ribonucleotide reductase generates the enzyme's essential tyrosyl radical. A crucial step in this reaction is the transfer of an electron from solution to a diiron(II/II)-O2 adduct during formation of the radical-generating, diiron(III/IV) intermediate X. In the reaction of R2 from Escherichia coli, this electron injection is initiated by the rapid (>400 s-1 at 5 degrees C), transient oxidation of the near-surface residue, tryptophan 48, to a cation radical and is blocked by substitution of W48 with F, A, G, Y, L, or Q. By contrast, a study of the cognate reaction in protein R2 from mouse suggested that electron injection might be the slowest step in generation of its tyrosyl radical, Y177* [Schmidt, P. P., Rova, U., Katterle, B., Thelander, L., and Gräslund, A. (1998) J. Biol. Chem. 273, 21463-21472]. The crucial evidence was the observation that Y177* production is slowed by approximately 30-fold upon substitution of W103, the cognate of the electron-shuttling W48 in E. coli R2, with tyrosine. In this work, we have applied stopped-flow absorption and freeze-quench electron paramagnetic resonance and Mössbauer spectroscopies to the mouse R2 reaction to evaluate the possibility that an already sluggish electron-transfer step is slowed by 30-fold by substitution of this key residue. The drastically reduced accumulation of cluster X, failure of precursors to the intermediate to accumulate, and, most importantly, first-order dependence of the rate of Y177* formation on the concentration of O2 prove that addition of O2 to the diiron(II/II) cluster, rather than electron injection, is the slowest step in the R2-W103Y reaction. This finding indicates that the basis for the slowing of Y177* formation by the W103Y substitution is an unexpected secondary effect on the structure or dynamics of the protein, its diiron(II/II) cluster, or both rather than the expected chemical effect on the electron injection step.
I类核糖核苷酸还原酶的蛋白质R2中的二价铁(II/II)簇激活O2会产生该酶的必需酪氨酸自由基。此反应中的一个关键步骤是在生成自由基的二价铁(III/IV)中间体X的过程中,电子从溶液转移至二价铁(II/II)-O2加合物。在大肠杆菌R2的反应中,这种电子注入是由近表面残基色氨酸48迅速(5℃时>400 s-1)、短暂地氧化为阳离子自由基引发的,并且用F、A、G、Y、L或Q取代W48会阻断该过程。相比之下,一项针对小鼠蛋白质R2中同源反应的研究表明,电子注入可能是其酪氨酸自由基Y177生成过程中最慢的步骤[施密特,P.P.,罗瓦,U.,卡特勒,B.,特兰德,L.,和格拉斯隆德,A.(1998年)《生物化学杂志》273,21463 - 21472]。关键证据是观察到,将大肠杆菌R2中作为电子穿梭体的W48的同源物W103替换为酪氨酸后,Y177的产生速度减慢了约30倍。在这项工作中,我们将停流吸收、冷冻淬灭电子顺磁共振和穆斯堡尔光谱应用于小鼠R2反应,以评估通过替换这个关键残基,原本就缓慢的电子转移步骤是否会减慢30倍。簇X的积累大幅减少、中间体前体未能积累,以及最重要的是,Y177形成速率对O2浓度的一级依赖性证明,二价铁(II/II)簇与O2的结合,而非电子注入,是R2 - W103Y反应中最慢的步骤。这一发现表明,W103Y取代导致Y177形成减慢的原因是对蛋白质、其二价铁(II/II)簇或两者的结构或动力学产生了意想不到的次要影响,而非对电子注入步骤产生预期的化学影响。