Suppr超能文献

比较灭绝风险分析中的偏差:关注差距。

Biases in comparative analyses of extinction risk: mind the gap.

机构信息

Department of Conservation Biology, Estación Biológica de Doñana (EBD-CSIC) Calle Américo Vespucio s/n, 41092 Sevilla, Spain.

出版信息

J Anim Ecol. 2012 Nov;81(6):1211-1222. doi: 10.1111/j.1365-2656.2012.01999.x. Epub 2012 May 28.

Abstract
  1. Comparative analyses are used to address the key question of what makes a species more prone to extinction by exploring the links between vulnerability and intrinsic species' traits and/or extrinsic factors. This approach requires comprehensive species data but information is rarely available for all species of interest. As a result comparative analyses often rely on subsets of relatively few species that are assumed to be representative samples of the overall studied group. 2. Our study challenges this assumption and quantifies the taxonomic, spatial, and data type biases associated with the quantity of data available for 5415 mammalian species using the freely available life-history database PanTHERIA. 3. Moreover, we explore how existing biases influence results of comparative analyses of extinction risk by using subsets of data that attempt to correct for detected biases. In particular, we focus on links between four species' traits commonly linked to vulnerability (distribution range area, adult body mass, population density and gestation length) and conduct univariate and multivariate analyses to understand how biases affect model predictions. 4. Our results show important biases in data availability with c.22% of mammals completely lacking data. Missing data, which appear to be not missing at random, occur frequently in all traits (14-99% of cases missing). Data availability is explained by intrinsic traits, with larger mammals occupying bigger range areas being the best studied. Importantly, we find that existing biases affect the results of comparative analyses by overestimating the risk of extinction and changing which traits are identified as important predictors. 5. Our results raise concerns over our ability to draw general conclusions regarding what makes a species more prone to extinction. Missing data represent a prevalent problem in comparative analyses, and unfortunately, because data are not missing at random, conventional approaches to fill data gaps, are not valid or present important challenges. These results show the importance of making appropriate inferences from comparative analyses by focusing on the subset of species for which data are available. Ultimately, addressing the data bias problem requires greater investment in data collection and dissemination, as well as the development of methodological approaches to effectively correct existing biases.
摘要
  1. 比较分析用于解决物种灭绝的关键问题,即探索物种脆弱性与内在物种特征和/或外在因素之间的联系,从而确定是什么导致物种更容易灭绝。这种方法需要全面的物种数据,但对于所有感兴趣的物种,信息很少是可用的。因此,比较分析通常依赖于相对较少的物种子集,这些子集被认为是整个研究组的代表性样本。

  2. 我们的研究挑战了这一假设,并使用免费的生命史数据库 PanTHERIA 量化了与 5415 种哺乳动物可用数据量相关的分类学、空间和数据类型偏差。

  3. 此外,我们通过使用试图纠正检测到的偏差的数据子集,探讨了现有偏差如何影响灭绝风险的比较分析结果。特别是,我们关注了通常与脆弱性相关的四个物种特征(分布范围面积、成年体重、种群密度和妊娠期长度)之间的联系,并进行了单变量和多变量分析,以了解偏差如何影响模型预测。

  4. 我们的研究结果表明,数据可用性存在重要偏差,约 22%的哺乳动物完全缺乏数据。缺失数据似乎不是随机缺失的,在所有特征中都经常出现(14-99%的情况下缺失)。数据可用性由内在特征解释,体型较大的哺乳动物占据的范围较大,是研究最多的。重要的是,我们发现现有偏差会通过高估灭绝风险和改变被认为是重要预测因素的特征来影响比较分析的结果。

  5. 我们的研究结果引起了人们对我们能否得出关于什么使一个物种更容易灭绝的一般性结论的关注。缺失数据是比较分析中普遍存在的问题,不幸的是,由于数据不是随机缺失的,因此填补数据空白的传统方法是无效的,或者存在重要的挑战。这些结果表明,从比较分析中进行适当推断的重要性,方法是关注具有可用数据的物种子集。最终,解决数据偏差问题需要在数据收集和传播方面投入更多的资金,以及开发有效的方法来纠正现有偏差。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验