Suppr超能文献

外显子组测序与复杂性状的遗传基础。

Exome sequencing and the genetic basis of complex traits.

机构信息

Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.

出版信息

Nat Genet. 2012 May 29;44(6):623-30. doi: 10.1038/ng.2303.

Abstract

Exome sequencing is emerging as a popular approach to study the effect of rare coding variants on complex phenotypes. The promise of exome sequencing is grounded in theoretical population genetics and in empirical successes of candidate gene sequencing studies. Many projects aimed at common diseases are underway, and their results are eagerly anticipated. In this Perspective, using exome sequencing data from 438 individuals, we discuss several aspects of exome sequencing studies that we view as particularly important. We review processing and quality control of raw sequence data, evaluate the statistical properties of exome sequencing studies, discuss rare variant burden tests to detect association to phenotypes, and demonstrate the importance of accounting for population stratification in the analysis of rare variants. We conclude that enthusiasm for exome sequencing studies of complex traits should be combined with the caution that thousands of samples may be required to reach sufficient statistical power.

摘要

外显子组测序作为一种研究罕见编码变异对复杂表型影响的方法正在兴起。外显子组测序的前景基于理论群体遗传学和候选基因测序研究的经验成功。许多针对常见疾病的项目正在进行中,人们热切期待着这些项目的结果。在这篇观点文章中,我们使用了 438 个人的外显子组测序数据,讨论了我们认为特别重要的外显子组测序研究的几个方面。我们回顾了原始序列数据的处理和质量控制,评估了外显子组测序研究的统计特性,讨论了用于检测与表型关联的罕见变异负担测试,并演示了在分析罕见变异时考虑群体分层的重要性。我们的结论是,对外显子组测序研究复杂性状的热情应该与以下观点结合起来,即可能需要数千个样本才能达到足够的统计效力。

相似文献

1
Exome sequencing and the genetic basis of complex traits.
Nat Genet. 2012 May 29;44(6):623-30. doi: 10.1038/ng.2303.
2
Guidelines for Large-Scale Sequence-Based Complex Trait Association Studies: Lessons Learned from the NHLBI Exome Sequencing Project.
Am J Hum Genet. 2016 Oct 6;99(4):791-801. doi: 10.1016/j.ajhg.2016.08.012. Epub 2016 Sep 22.
3
Exome sequencing: capture and sequencing of all human coding regions for disease gene discovery.
Methods Mol Biol. 2012;884:335-51. doi: 10.1007/978-1-61779-848-1_24.
4
Characterization of ADME gene variation in 21 populations by exome sequencing.
Pharmacogenet Genomics. 2017 Mar;27(3):89-100. doi: 10.1097/FPC.0000000000000260.
5
SEQSpark: A Complete Analysis Tool for Large-Scale Rare Variant Association Studies Using Whole-Genome and Exome Sequence Data.
Am J Hum Genet. 2017 Jul 6;101(1):115-122. doi: 10.1016/j.ajhg.2017.05.017. Epub 2017 Jun 29.
6
A fast and noise-resilient approach to detect rare-variant associations with deep sequencing data for complex disorders.
Genet Epidemiol. 2012 Nov;36(7):675-85. doi: 10.1002/gepi.21662. Epub 2012 Aug 3.
8
Case-only exome sequencing and complex disease susceptibility gene discovery: study design considerations.
J Med Genet. 2015 Jan;52(1):10-6. doi: 10.1136/jmedgenet-2014-102697. Epub 2014 Nov 4.
10
Exome sequencing as a tool for Mendelian disease gene discovery.
Nat Rev Genet. 2011 Sep 27;12(11):745-55. doi: 10.1038/nrg3031.

引用本文的文献

1
Exome Sequencing in Adults with Unexplained Liver Disease: Diagnostic Yield and Clinical Impact.
Diagnostics (Basel). 2025 Aug 11;15(16):2010. doi: 10.3390/diagnostics15162010.
2
Autoencoder-Transformed Transcriptome Improves Genotype-Phenotype Association Studies.
IEEE Trans Comput Biol Bioinform. 2025 Jul-Aug;22(4):1703-1715. doi: 10.1109/TCBBIO.2025.3568376.
3
Selecting variant masks to improve power and replicability of gene-level burden tests.
Res Sq. 2025 Apr 15:rs.3.rs-6322956. doi: 10.21203/rs.3.rs-6322956/v1.
5
Benefits and Challenges of Rare Genetic Variation in Alzheimer's Disease.
Curr Genet Med Rep. 2019 Mar;7(1):53-62. doi: 10.1007/s40142-019-0161-5. Epub 2019 Feb 1.
6
No evidence that ACE2 or TMPRSS2 drive population disparity in COVID risks.
BMC Med. 2024 Aug 26;22(1):337. doi: 10.1186/s12916-024-03539-0.
7
A method to comprehensively identify germline SNVs, INDELs and CNVs from whole exome sequencing data of BRCA1/2 negative breast cancer patients.
NAR Genom Bioinform. 2024 Apr 17;6(2):lqae033. doi: 10.1093/nargab/lqae033. eCollection 2024 Jun.
8
Functional Neural Networks for High-Dimensional Genetic Data Analysis.
IEEE/ACM Trans Comput Biol Bioinform. 2024 May-Jun;21(3):383-393. doi: 10.1109/TCBB.2024.3364614. Epub 2024 Jun 5.
9
DEVOUR: Deleterious Variants on Uncovered Regions in Whole-Exome Sequencing.
PeerJ. 2023 Sep 15;11:e16026. doi: 10.7717/peerj.16026. eCollection 2023.
10
Exome-wide screening identifies novel rare risk variants for bone mineral density.
Osteoporos Int. 2023 May;34(5):965-975. doi: 10.1007/s00198-023-06710-0. Epub 2023 Feb 28.

本文引用的文献

1
Computational and statistical approaches to analyzing variants identified by exome sequencing.
Genome Biol. 2011 Sep 14;12(9):227. doi: 10.1186/gb-2011-12-9-227.
2
Increasing power of groupwise association test with likelihood ratio test.
J Comput Biol. 2011 Nov;18(11):1611-24. doi: 10.1089/cmb.2011.0161. Epub 2011 Sep 15.
3
Needles in stacks of needles: finding disease-causal variants in a wealth of genomic data.
Nat Rev Genet. 2011 Aug 18;12(9):628-40. doi: 10.1038/nrg3046.
4
Exome sequencing of head and neck squamous cell carcinoma reveals inactivating mutations in NOTCH1.
Science. 2011 Aug 26;333(6046):1154-7. doi: 10.1126/science.1206923. Epub 2011 Jul 28.
5
Comparison of statistical tests for disease association with rare variants.
Genet Epidemiol. 2011 Nov;35(7):606-19. doi: 10.1002/gepi.20609. Epub 2011 Jul 18.
6
Rare-variant association testing for sequencing data with the sequence kernel association test.
Am J Hum Genet. 2011 Jul 15;89(1):82-93. doi: 10.1016/j.ajhg.2011.05.029. Epub 2011 Jul 7.
7
Exome sequencing reveals comprehensive genomic alterations across eight cancer cell lines.
PLoS One. 2011;6(6):e21097. doi: 10.1371/journal.pone.0021097. Epub 2011 Jun 20.
8
Comparison of three targeted enrichment strategies on the SOLiD sequencing platform.
PLoS One. 2011 Apr 29;6(4):e18595. doi: 10.1371/journal.pone.0018595.
9
Exome sequencing identifies GRIN2A as frequently mutated in melanoma.
Nat Genet. 2011 May;43(5):442-6. doi: 10.1038/ng.810. Epub 2011 Apr 15.
10
Prediction of missense mutation functionality depends on both the algorithm and sequence alignment employed.
Hum Mutat. 2011 Jun;32(6):661-8. doi: 10.1002/humu.21490. Epub 2011 Apr 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验