Department of Pathology, Yale University School of Medicine, New Haven, CT 06520, USA.
Nucleic Acids Res. 2012 Sep 1;40(17):e134. doi: 10.1093/nar/gks457. Epub 2012 May 27.
High-throughput immunoglobulin sequencing promises new insights into the somatic hypermutation and antigen-driven selection processes that underlie B-cell affinity maturation and adaptive immunity. The ability to estimate positive and negative selection from these sequence data has broad applications not only for understanding the immune response to pathogens, but is also critical to determining the role of somatic hypermutation in autoimmunity and B-cell cancers. Here, we develop a statistical framework for Bayesian estimation of Antigen-driven SELectIoN (BASELINe) based on the analysis of somatic mutation patterns. Our approach represents a fundamental advance over previous methods by shifting the problem from one of simply detecting selection to one of quantifying selection. Along with providing a more intuitive means to assess and visualize selection, our approach allows, for the first time, comparative analysis between groups of sequences derived from different germline V(D)J segments. Application of this approach to next-generation sequencing data demonstrates different selection pressures for memory cells of different isotypes. This framework can easily be adapted to analyze other types of DNA mutation patterns resulting from a mutator that displays hot/cold-spots, substitution preference or other intrinsic biases.
高通量免疫球蛋白测序有望为体细胞超突变和抗原驱动的选择过程提供新的见解,这些过程是 B 细胞亲和力成熟和适应性免疫的基础。从这些序列数据中估计正选择和负选择的能力不仅广泛应用于理解对病原体的免疫反应,而且对于确定体细胞超突变在自身免疫和 B 细胞癌症中的作用也至关重要。在这里,我们开发了一种基于体细胞突变模式分析的贝叶斯估计抗原驱动选择(BASELINe)的统计框架。我们的方法代表了一个基本的进步,通过将问题从简单地检测选择转移到量化选择。除了提供一种更直观的方法来评估和可视化选择之外,我们的方法还首次允许对来自不同种系 V(D)J 片段的不同序列组进行比较分析。将这种方法应用于下一代测序数据表明,不同同种型的记忆细胞受到不同的选择压力。这个框架可以很容易地适应分析其他类型的由于显示热点/冷点、取代偏好或其他内在偏差的诱变剂而产生的 DNA 突变模式。