Suppr超能文献

原子模拟钙铀酰(VI)碳酸盐在方解石和阶梯状方解石表面的吸附。

Atomistic simulations of calcium uranyl(VI) carbonate adsorption on calcite and stepped-calcite surfaces.

机构信息

School of Chemistry, University of Manchester, Manchester, M13 9PL, UK.

出版信息

Environ Sci Technol. 2012 Jul 17;46(14):7587-94. doi: 10.1021/es300034k. Epub 2012 Jul 2.

Abstract

Adsorption of actinyl ions onto mineral surfaces is one of the main mechanisms that control the migration of these ions in environmental systems. Here, we present computational classical molecular dynamics (MD) simulations to investigate the behavior of U(VI) in contact with different calcite surfaces. The calcium-uranyl-carbonate [Ca(2)UO(2)(CO(3))(3)] species is shown to display both inner- and outer-sphere adsorption to the flat {101̅4} and the stepped {314̅8} and {31̅2̅16} planes of calcite. Free energy calculations, using the umbrella sampling method, are employed to simulate adsorption paths of the same uranyl species on the different calcite surfaces under aqueous condition. Outer-sphere adsorption is found to dominate over inner-sphere adsorption because of the high free energy barrier of removing a uranyl-carbonate interaction and replacing it with a new uranyl-surface interaction. An important binding mode is proposed involving a single vicinal water monolayer between the surface and the sorbed complex. From the free energy profiles of the different calcite surfaces, the uranyl complex was also found to adsorb preferentially on the acute-stepped {314̅8} face of calcite, in agreement with experiment.

摘要

铀酰离子在矿物表面的吸附是控制这些离子在环境系统中迁移的主要机制之一。在这里,我们进行了计算经典分子动力学 (MD) 模拟,以研究 U(VI) 与不同方解石表面接触时的行为。研究表明,钙铀碳酸盐 [Ca(2)UO(2)(CO(3))(3)] 物种既可以通过内球吸附,也可以通过外球吸附到方解石的 {101̅4} 平面和 {314̅8} 以及 {31̅2̅16} 阶跃面上。我们采用伞状采样法进行自由能计算,模拟了相同铀酰物种在水相条件下不同方解石表面的吸附路径。由于去除铀碳酸盐相互作用并替换为新的铀表面相互作用的自由能势垒较高,因此发现外球吸附比内球吸附更为常见。提出了一种重要的结合模式,涉及表面和吸附配合物之间的单层邻位水分子。从不同方解石表面的自由能曲线可以看出,铀酰配合物也优先吸附在方解石的锐角阶 {314̅8} 面上,这与实验结果一致。

相似文献

1
Atomistic simulations of calcium uranyl(VI) carbonate adsorption on calcite and stepped-calcite surfaces.
Environ Sci Technol. 2012 Jul 17;46(14):7587-94. doi: 10.1021/es300034k. Epub 2012 Jul 2.
2
Diffusion and adsorption of uranyl carbonate species in nanosized mineral fractures.
Environ Sci Technol. 2012 Feb 7;46(3):1632-40. doi: 10.1021/es2027696. Epub 2012 Jan 13.
3
Molecular dynamics simulations of uranyl and uranyl carbonate adsorption at aluminosilicate surfaces.
Environ Sci Technol. 2014 Apr 1;48(7):3899-907. doi: 10.1021/es405387c. Epub 2014 Mar 12.
4
Molecular dynamics simulation of uranyl(VI) adsorption equilibria onto an external montmorillonite surface.
Phys Chem Chem Phys. 2005 Oct 21;7(20):3580-6. doi: 10.1039/b509307d. Epub 2005 Sep 8.
5
Formation of a ternary neptunyl(V) biscarbonato inner-sphere sorption complex inhibits calcite growth rate.
J Contam Hydrol. 2011 Jun 1;124(1-4):50-6. doi: 10.1016/j.jconhyd.2011.02.002. Epub 2011 Feb 12.
6
Interaction of uranyl with calcite in the presence of EDTA.
Environ Sci Technol. 2004 Oct 1;38(19):5078-86. doi: 10.1021/es049847b.
7
Investigation of ligand exchange reactions in aqueous uranyl carbonate complexes using computational approaches.
Phys Chem Chem Phys. 2011 Jun 21;13(23):11402-11. doi: 10.1039/c1cp20617f. Epub 2011 May 13.
9
Protein binding on stepped calcite surfaces: simulations of ovocleidin-17 on calcite {31.16} and {31.8}.
Phys Chem Chem Phys. 2012 May 28;14(20):7287-95. doi: 10.1039/c2cp23987f. Epub 2012 Apr 24.
10
Uranyl adsorption at the muscovite (mica)/water interface studied by second harmonic generation.
Environ Sci Technol. 2012 Oct 16;46(20):11154-61. doi: 10.1021/es302879y. Epub 2012 Oct 3.

引用本文的文献

1
Biogeochemical behaviour and bioremediation of uranium in waters of abandoned mines.
Environ Sci Pollut Res Int. 2013 Nov;20(11):7740-67. doi: 10.1007/s11356-013-1486-3. Epub 2013 Jan 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验