Marashi Sayed-Amir, David Laszlo, Bockmayr Alexander
International Max Planck Research School for Computational Biology and Scientic Computing (IMPRS-CBSC), Max Planck Institute for Molecular Genetics, Ihnestr. 63-73, D-14195 Berlin, Germany.
FB Mathematik und Informatik, Freie Universität Berlin, Arnimallee 6, D-14195 Berlin, Germany.
Algorithms Mol Biol. 2012 May 29;7(1):17. doi: 10.1186/1748-7188-7-17.
Analysis of elementary modes (EMs) is proven to be a powerful constraint-based method in the study of metabolic networks. However, enumeration of EMs is a hard computational task. Additionally, due to their large number, EMs cannot be simply used as an input for subsequent analysis. One possibility is to limit the analysis to a subset of interesting reactions. However, analysing an isolated subnetwork can result in finding incorrect EMs which are not part of any steady-state flux distribution of the original network. The ideal set to describe the reaction activity in a subnetwork would be the set of all EMs projected to the reactions of interest. Recently, the concept of "elementary flux patterns" (EFPs) has been proposed. Each EFP is a subset of the support (i.e., non-zero elements) of at least one EM.
We introduce the concept of ProCEMs (Projected Cone Elementary Modes). The ProCEM set can be computed by projecting the flux cone onto a lower-dimensional subspace and enumerating the extreme rays of the projected cone. In contrast to EFPs, ProCEMs are not merely a set of reactions, but projected EMs. We additionally prove that the set of EFPs is included in the set of ProCEM supports. Finally, ProCEMs and EFPs are compared for studying substructures of biological networks.
We introduce the concept of ProCEMs and recommend its use for the analysis of substructures of metabolic networks for which the set of EMs cannot be computed.
在代谢网络研究中,基本模式(EMs)分析被证明是一种强大的基于约束的方法。然而,基本模式的枚举是一项艰巨的计算任务。此外,由于其数量众多,基本模式不能简单地用作后续分析的输入。一种可能性是将分析限制在一组有趣的反应上。然而,分析一个孤立的子网可能会导致发现不正确的基本模式,这些模式不是原始网络任何稳态通量分布的一部分。描述子网中反应活性的理想集合应该是投影到感兴趣反应上的所有基本模式的集合。最近,“基本通量模式”(EFPs)的概念被提出。每个基本通量模式是至少一个基本模式的支撑集(即非零元素)的一个子集。
我们引入了投影锥基本模式(ProCEMs)的概念。投影锥基本模式集可以通过将通量锥投影到一个低维子空间并枚举投影锥的极射线来计算。与基本通量模式不同,投影锥基本模式不仅仅是一组反应,而是投影后的基本模式。我们还证明了基本通量模式集包含在投影锥基本模式支撑集中。最后,比较了投影锥基本模式和基本通量模式在研究生物网络子结构方面的情况。
我们引入了投影锥基本模式的概念,并建议将其用于分析无法计算基本模式集的代谢网络子结构。