Suppr超能文献

代谢网络通量锥的几何结构。

The geometry of the flux cone of a metabolic network.

作者信息

Wagner Clemens, Urbanczik Robert

机构信息

Institute of Pharmacology, Bern, Switzerland.

出版信息

Biophys J. 2005 Dec;89(6):3837-45. doi: 10.1529/biophysj.104.055129. Epub 2005 Sep 23.

Abstract

The analysis of metabolic networks has become a major topic in biotechnology in recent years. Applications range from the enhanced production of selected outputs to the prediction of genotype-phenotype relationships. The concepts used are based on the assumption of a pseudo steady-state of the network, so that for each metabolite inputs and outputs are balanced. The stoichiometric network analysis expands the steady state into a combination of nonredundant subnetworks with positive coefficients called extremal currents. Based on the unidirectional representation of the system these subnetworks form a convex cone in the flux-space. A modification of this approach allowing for reversible reactions led to the definition of elementary modes. Extreme pathways are obtained with the same method but splitting up internal reactions into forward and backward rates. In this study, we explore the relationship between these concepts. Due to the combinatorial explosion of the number of elementary modes in large networks, we promote a further set of metabolic routes, which we call the minimal generating set. It is the smallest subset of elementary modes required to describe all steady states of the system. For large-scale networks, the size of this set is of several magnitudes smaller than that of elementary modes and of extreme pathways.

摘要

近年来,代谢网络分析已成为生物技术领域的一个主要课题。其应用范围从提高特定产物的产量到预测基因型与表型的关系。所使用的概念基于网络伪稳态的假设,从而使每种代谢物的输入和输出达到平衡。化学计量网络分析将稳态扩展为具有正系数的非冗余子网络的组合,这些正系数称为极值电流。基于系统的单向表示,这些子网络在通量空间中形成一个凸锥。对该方法进行修改以允许可逆反应,从而引出了基本模式的定义。通过相同的方法获得极端途径,但将内部反应分为正向和反向速率。在本研究中,我们探讨了这些概念之间的关系。由于大型网络中基本模式数量的组合爆炸式增长,我们提出了另一组代谢途径,我们称之为最小生成集。它是描述系统所有稳态所需的基本模式的最小子集。对于大规模网络,该集合的规模比基本模式和极端途径的规模小几个数量级。

相似文献

1
The geometry of the flux cone of a metabolic network.
Biophys J. 2005 Dec;89(6):3837-45. doi: 10.1529/biophysj.104.055129. Epub 2005 Sep 23.
2
Expa: a program for calculating extreme pathways in biochemical reaction networks.
Bioinformatics. 2005 Apr 15;21(8):1739-40. doi: 10.1093/bioinformatics/bti228. Epub 2004 Dec 21.
3
Metabolic network properties help assign weights to elementary modes to understand physiological flux distributions.
Bioinformatics. 2007 May 1;23(9):1049-52. doi: 10.1093/bioinformatics/btm074. Epub 2007 Mar 6.
4
Enumerating constrained elementary flux vectors of metabolic networks.
IET Syst Biol. 2007 Sep;1(5):274-9. doi: 10.1049/iet-syb:20060073.
5
Computation of elementary modes: a unifying framework and the new binary approach.
BMC Bioinformatics. 2004 Nov 4;5:175. doi: 10.1186/1471-2105-5-175.
7
Predicting genetic engineering targets with Elementary Flux Mode Analysis: a review of four current methods.
N Biotechnol. 2015 Dec 25;32(6):534-46. doi: 10.1016/j.nbt.2015.03.017. Epub 2015 Apr 24.
8
Pathway classification of TCA cycle.
Syst Biol (Stevenage). 2006 Sep;153(5):369-71. doi: 10.1049/ip-syb:20060013.
9
Two approaches for metabolic pathway analysis?
Trends Biotechnol. 2003 Feb;21(2):64-9. doi: 10.1016/s0167-7799(02)00034-3.
10
Finding minimal generating set for metabolic network with reversible pathways.
Biosystems. 2013 Apr;112(1):31-6. doi: 10.1016/j.biosystems.2013.02.003. Epub 2013 Mar 6.

引用本文的文献

1
A hierarchy of metabolite exchanges in metabolic models of microbial species and communities.
PLoS Comput Biol. 2024 Sep 26;20(9):e1012472. doi: 10.1371/journal.pcbi.1012472. eCollection 2024 Sep.
3
ReDirection: an R-package to compute the probable dissociation constant for every reaction of a user-defined biochemical network.
Front Mol Biosci. 2023 Oct 24;10:1206502. doi: 10.3389/fmolb.2023.1206502. eCollection 2023.
4
EFMlrs: a Python package for elementary flux mode enumeration via lexicographic reverse search.
BMC Bioinformatics. 2021 Nov 10;22(1):547. doi: 10.1186/s12859-021-04417-9.
5
Opportunities at the Interface of Network Science and Metabolic Modeling.
Front Bioeng Biotechnol. 2021 Jan 25;8:591049. doi: 10.3389/fbioe.2020.591049. eCollection 2020.
6
Comparison of pathway analysis and constraint-based methods for cell factory design.
BMC Bioinformatics. 2019 Jun 20;20(1):350. doi: 10.1186/s12859-019-2934-y.
7
Bio-production of gaseous alkenes: ethylene, isoprene, isobutene.
Biotechnol Biofuels. 2018 Aug 29;11:234. doi: 10.1186/s13068-018-1230-9. eCollection 2018.
8
A Review of Dynamic Modeling Approaches and Their Application in Computational Strain Optimization for Metabolic Engineering.
Front Microbiol. 2018 Jul 31;9:1690. doi: 10.3389/fmicb.2018.01690. eCollection 2018.
9
From elementary flux modes to elementary flux vectors: Metabolic pathway analysis with arbitrary linear flux constraints.
PLoS Comput Biol. 2017 Apr 13;13(4):e1005409. doi: 10.1371/journal.pcbi.1005409. eCollection 2017 Apr.
10
In Silico Constraint-Based Strain Optimization Methods: the Quest for Optimal Cell Factories.
Microbiol Mol Biol Rev. 2015 Nov 25;80(1):45-67. doi: 10.1128/MMBR.00014-15. Print 2016 Mar.

本文引用的文献

1
Metabolic pathway structures for recombinant protein synthesis in Escherichia coli.
Appl Microbiol Biotechnol. 2005 Oct;68(6):737-46. doi: 10.1007/s00253-005-1920-7. Epub 2005 Oct 13.
2
An improved algorithm for stoichiometric network analysis: theory and applications.
Bioinformatics. 2005 Apr 1;21(7):1203-10. doi: 10.1093/bioinformatics/bti127. Epub 2004 Nov 11.
3
Genome-scale models of microbial cells: evaluating the consequences of constraints.
Nat Rev Microbiol. 2004 Nov;2(11):886-97. doi: 10.1038/nrmicro1023.
4
Comparison of network-based pathway analysis methods.
Trends Biotechnol. 2004 Aug;22(8):400-5. doi: 10.1016/j.tibtech.2004.06.010.
5
Chromokinetics of metabolic pathways.
Eur J Biochem. 2004 Jul;271(13):2745-54. doi: 10.1111/j.1432-1033.2004.04203.x.
6
Thermodynamic constraints for biochemical networks.
J Theor Biol. 2004 Jun 7;228(3):327-33. doi: 10.1016/j.jtbi.2004.01.008.
7
Minimal cut sets in biochemical reaction networks.
Bioinformatics. 2004 Jan 22;20(2):226-34. doi: 10.1093/bioinformatics/btg395.
8
Saccharomyces cerevisiae phenotypes can be predicted by using constraint-based analysis of a genome-scale reconstructed metabolic network.
Proc Natl Acad Sci U S A. 2003 Nov 11;100(23):13134-9. doi: 10.1073/pnas.2235812100. Epub 2003 Oct 24.
9
Metabolic pathways in the post-genome era.
Trends Biochem Sci. 2003 May;28(5):250-8. doi: 10.1016/S0968-0004(03)00064-1.
10
Development of network-based pathway definitions: the need to analyze real metabolic networks.
Trends Biotechnol. 2003 May;21(5):195-8. doi: 10.1016/S0167-7799(03)00080-5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验