Department of Chemical Engineering, University of South Carolina, Columbia, South Carolina 29208, United States.
Biomacromolecules. 2012 Jul 9;13(7):2073-86. doi: 10.1021/bm300453k. Epub 2012 Jun 11.
The use of poly(ethylene glycol) (PEG) hydrogels in tissue engineering is limited by their persistence in the site of regeneration. In an attempt to produce inert hydrolytically degradable PEG-based hydrogels, star (SPELA) poly(ethylene glycol-co-lactide) acrylate macromonomers with short lactide segments (<15 lactides per macromonomer) were synthesized. The SPELA hydrogel was characterized with respect to gelation time, modulus, water content, sol fraction, degradation, and osteogenic differentiation of encapsulated marrow stromal cells (MSCs). The properties of SPELA hydrogel were compared with those of the linear poly(ethylene glycol-co-lactide) acrylate (LPELA). The SPELA hydrogel had higher modulus, lower water content, and lower sol fraction than the LPELA. The shear modulus of SPELA hydrogel was 2.2 times higher than LPELA, whereas the sol fraction of SPELA hydrogel was 5 times lower than LPELA. The degradation of SPELA hydrogel depended strongly on the number of lactide monomers per macromonomer (nL) and showed a biphasic behavior. For example, as nL increased from 0 to 3.4, 6.4, 11.6, and 14.8, mass loss increased from 7 to 37, 80, 100% and then deceased to 87%, respectively, after 6 weeks of incubation. The addition of 3.4 lactides per macromonomer (<10 wt % dry macromonomer or <2 wt % swollen hydrogel) increased mass loss to 50% after 6 weeks. Molecular dynamic simulations demonstrated that the biphasic degradation behavior was related to aggregation and micelle formation of lactide monomers in the macromonomer in aqueous solution. MSCs encapsulated in SPELA hydrogel expressed osteogenic markers Dlx5, Runx2, osteopontin, and osteocalcin and formed a mineralized matrix. The expression of osteogenic markers and extent of mineralization was significantly higher when MSCs were encapsulated in SPELA hydrogel with the addition of bone morphogenetic protein-2 (BMP2). Results demonstrate that hydrolytically degradable PEG-based hydrogels are potentially useful as a delivery matrix for stem cells in regenerative medicine.
聚乙二醇(PEG)水凝胶在组织工程中的应用受到其在再生部位持续存在的限制。为了生产惰性的水解可降解 PEG 基水凝胶,合成了具有短内酯段(每个大分子单体中 <15 个内酯)的星型(SPELA)聚乙二醇-co-丙交酯丙烯酸酯大分子单体。对 SPELA 水凝胶的凝胶时间、模量、含水量、溶胶分数、降解和包封骨髓基质细胞(MSCs)的成骨分化进行了表征。将 SPELA 水凝胶的性质与线性聚乙二醇-co-丙交酯丙烯酸酯(LPELA)进行了比较。SPELA 水凝胶的模量、含水量和溶胶分数均低于 LPELA。SPELA 水凝胶的剪切模量比 LPELA 高 2.2 倍,而 SPELA 水凝胶的溶胶分数比 LPELA 低 5 倍。SPELA 水凝胶的降解强烈依赖于每个大分子单体中的内酯单体数(nL),并表现出两相行为。例如,当 nL 从 0 增加到 3.4、6.4、11.6 和 14.8 时,在 6 周孵育后,质量损失分别从 7%增加到 37%、80%、100%,然后降至 87%。添加 3.4 个内酯单体/大分子单体(<10wt%干大分子单体或<2wt%溶胀水凝胶)可使 6 周后质量损失增加到 50%。分子动力学模拟表明,两相降解行为与水溶液中大单体中内酯单体的聚集和胶束形成有关。包封在 SPELA 水凝胶中的 MSC 表达成骨标志物 Dlx5、Runx2、骨桥蛋白和骨钙素,并形成矿化基质。当 MSC 包封在添加骨形态发生蛋白-2(BMP2)的 SPELA 水凝胶中时,成骨标志物的表达和矿化程度显著增加。结果表明,水解可降解 PEG 基水凝胶作为再生医学中干细胞的递送基质具有潜在的应用价值。