Department of Nuclear Medicine, Aalborg University Hospital, Denmark.
Phys Med Biol. 2012 Jun 21;57(12):3931-43. doi: 10.1088/0031-9155/57/12/3931. Epub 2012 May 30.
Positron range impairs resolution in PET imaging, especially for high-energy emitters and for small-animal PET. De-blurring in image reconstruction is possible if the blurring distribution is known. Furthermore, the percentage of annihilation events within a given distance from the point of positron emission is relevant for assessing statistical noise. This paper aims to determine the positron range distribution relevant for blurring for seven medically relevant PET isotopes, (18)F, (11)C, (13)N, (15)O, (68)Ga, (62)Cu and (82)Rb, and derive empirical formulas for the distributions. This paper focuses on allowed-decay isotopes. It is argued that blurring at the detection level should not be described by the positron range r, but instead the 2D projected distance δ (equal to the closest distance between decay and line of response). To determine these 2D distributions, results from a dedicated positron track-structure Monte Carlo code, Electron and POsitron TRANsport (EPOTRAN), were used. Materials other than water were studied with PENELOPE. The radial cumulative probability distribution G(2D)(δ) and the radial probability density distribution g(2D)(δ) were determined. G(2D)(δ) could be approximated by the empirical function 1 - exp(-Aδ(2) - Bδ), where A = 0.0266 (E(mean))(-1.716) and B = 0.1119 (E(mean))(-1.934), with E(mean) being the mean positron energy in MeV and δ in mm. The radial density distribution g(2D)(δ) could be approximated by differentiation of G(2D)(δ). Distributions in other media were very similar to water. The positron range is important for improved resolution in PET imaging. Relevant distributions for the positron range have been derived for seven isotopes. Distributions for other allowed-decay isotopes may be estimated with the above formulas.
正电子射程会影响 PET 成像的分辨率,尤其是对于高能发射体和小动物 PET。如果知道模糊分布,在图像重建中进行去模糊是可能的。此外,在给定距离内从正电子发射点的湮灭事件的百分比对于评估统计噪声是相关的。本文旨在确定与 7 种与医学相关的 PET 同位素(18)F、(11)C、(13)N、(15)O、(68)Ga、(62)Cu 和(82)Rb 的模糊相关的正电子射程分布,并推导出这些分布的经验公式。本文重点关注允许衰变的同位素。有人认为,在检测水平上的模糊不应由正电子射程 r 来描述,而应由 2D 投影距离 δ(等于衰变和响应线之间的最近距离)来描述。为了确定这些 2D 分布,使用了专门的正电子轨迹结构蒙特卡罗代码 Electron and POsitron TRANsport(EPOTRAN)的结果。除水以外的材料用 PENELOPE 进行了研究。确定了径向累积概率分布 G(2D)(δ)和径向概率密度分布 g(2D)(δ)。G(2D)(δ)可以用经验函数 1 - exp(-Aδ(2) - Bδ)来近似,其中 A = 0.0266(E(mean))(-1.716) 和 B = 0.1119(E(mean))(-1.934),E(mean)为 MeV 中的平均正电子能量,δ 为 mm。径向密度分布 g(2D)(δ)可以通过对 G(2D)(δ)进行微分来近似。其他介质中的分布与水非常相似。正电子射程对 PET 成像的分辨率提高很重要。已经为七种同位素推导出了正电子射程的相关分布。其他允许衰变的同位素的分布可以用上述公式来估计。