Tartu Ülikooli Molekulaar-ja Rakubioloogia Instituut, Riia tn. 23, Tartu, 51010, Estonia.
Photosynth Res. 2012 Sep;113(1-3):145-55. doi: 10.1007/s11120-012-9751-8. Epub 2012 May 30.
Oxygen evolution and Chl fluorescence induction were measured during multiple turnover light pulses (MTP) of 630-nm wavelength, intensities from 250 to 8,000 μmol quanta m(-2) s(-1) and duration from 0.3 to 200 ms in sunflower leaves at 22 °C. The ambient O(2) concentration was 10-30 ppm and MTP were applied after pre-illumination under far-red light (FRL), which oxidized plastoquinone (PQ) and randomized S-states because of the partial excitation of PSII. Electron (e ( - )) flow was calculated as 4·O(2) evolution. Illumination with MTP of increasing length resulted in increasing O(2) evolution per pulse, which was differentiated against pulse length to find the time course of O(2) evolution rate with sub-millisecond resolution. Comparison of the quantum yields, Y (IIO) = e ( - )/hν from O(2) evolution and Y (IIF) = (F (m) - F)/F (m) from Chl fluorescence, detected significant losses not accompanied by fluorescence emission. These quantum losses are discussed to be caused by charge recombination between Q (A) (-) and oxidized TyrZ at a rate of about 1,000 s(-1), either directly or via the donor side equilibrium complex Q(A) → P (D1) (+) ↔ TyrZ(ox), or because of cycling facilitated by Cyt b (559). Predicted from the suggested mechanism, charge recombination is enhanced by damage to the water-oxidizing complex and by restricted PSII acceptor side oxidation. The rate of PSII charge recombination/cycling is fast enough for being important in photoprotection.
在 22°C 下,用波长为 630nm、强度为 250 到 8000μmol 量子 m(-2) s(-1)、持续时间为 0.3 到 200ms 的多次光脉冲(MTP)测量了氧的释放和叶绿素荧光诱导。环境 O(2)浓度为 10-30ppm,MTP 是在远红光(FRL)预照射后施加的,这会氧化质体醌(PQ)并随机化 S 态,因为 PSII 的部分激发。电子(e (-) )流计算为 4·O(2) 释放。随着 MTP 长度的增加,每个脉冲的 O(2) 释放量增加,通过将脉冲长度进行微分可以找到 O(2)释放率的时间进程,分辨率达到亚毫秒级。比较量子产率,从 O(2) 释放的 Y(IIO) = e (-) / hν和从叶绿素荧光的 Y(IIF) = (F(m) - F) / F(m),发现存在未伴随荧光发射的显著损耗。这些量子损耗被认为是由于 Q(A) (-) 和氧化的 TyrZ 之间的电荷复合引起的,复合速率约为 1000s(-1),可以直接或通过供体侧平衡复合物 Q(A) → P(D1)(+)↔TyrZ(ox),或者由于 Cyt b(559)的循环促进。根据建议的机制预测,电荷复合会因水氧化复合物的损伤和 PSII 受体侧氧化受限而增强。PSII 电荷复合/循环的速率足够快,在光保护中很重要。