Suppr超能文献

分子量子点细胞自动机多驱动器门的准经典建模。

Quasi-classical modeling of molecular quantum-dot cellular automata multidriver gates.

机构信息

Nanoptronics Research Center, School of Electrical and Electronic Engineering, Iran University of Science and Technology, Tehran, 16844, Iran.

出版信息

Nanoscale Res Lett. 2012 May 30;7(1):274. doi: 10.1186/1556-276X-7-274.

Abstract

Molecular quantum-dot cellular automata (mQCA) has received considerable attention in nanoscience. Unlike the current-based molecular switches, where the digital data is represented by the on/off states of the switches, in mQCA devices, binary information is encoded in charge configuration within molecular redox centers. The mQCA paradigm allows high device density and ultra-low power consumption. Digital mQCA gates are the building blocks of circuits in this paradigm. Design and analysis of these gates require quantum chemical calculations, which are demanding in computer time and memory. Therefore, developing simple models to probe mQCA gates is of paramount importance. We derive a semi-classical model to study the steady-state output polarization of mQCA multidriver gates, directly from the two-state approximation in electron transfer theory. The accuracy and validity of this model are analyzed using full quantum chemistry calculations. A complete set of logic gates, including inverters and minority voters, are implemented to provide an appropriate test bench in the two-dot mQCA regime. We also briefly discuss how the QCADesigner tool could find its application in simulation of mQCA devices.

摘要

分子量子点细胞自动机(mQCA)在纳米科学中受到了相当多的关注。与基于电流的分子开关不同,在分子开关中,数字数据由开关的开/关状态表示,而在 mQCA 器件中,二进制信息编码在分子氧化还原中心内的电荷配置中。mQCA 范式允许高器件密度和超低功耗。数字 mQCA 门是该范式中电路的构建块。这些门的设计和分析需要量子化学计算,这在计算机时间和内存方面要求很高。因此,开发简单的模型来探测 mQCA 门是至关重要的。我们从电子转移理论中的两态近似出发,推导出一个半经典模型来研究 mQCA 多驱动器门的稳态输出极化。使用全量子化学计算分析了该模型的准确性和有效性。我们实现了一套完整的逻辑门,包括反相器和少数投票器,为双点 mQCA 系统提供了一个合适的测试平台。我们还简要讨论了 QCADesigner 工具如何在 mQCA 器件的模拟中找到应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4543/3492122/bea016562d87/1556-276X-7-274-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验